INTRODUCTION

- Influenza is an infectious respiratory illness caused by the influenza A and influenza B viruses. Influenza epidemics occur annually in the United States, typically from late fall to early spring. Although the majority of infected individuals recover without complications, some cases of influenza result in severe illness or death (Grohskopf et al 2018).
- The virus is primarily transmitted through direct contact large-particle respiratory droplets from an infected individual’s coughs and sneezes. It is also spread through contact with surfaces contaminated by infected respiratory droplets. Adults begin to shed virus 1 day prior to symptom onset, and they remain contagious for 5 to 7 days after falling ill (Centers for Disease Control and Prevention [CDC] 2016).
- Signs and symptoms of uncomplicated influenza illness include fever, myalgia, headache, malaise, nonproductive cough, sore throat, and rhinitis. Complications of influenza infection include sinusitis, otitis media, pneumonia, sepsis, and exacerbation of chronic medical conditions. Elderly adults, young children, pregnant women, and patients with chronic medical conditions have a higher risk of developing complications from influenza (CDC 2018[a]).
- Annual influenza vaccination is the most effective method for preventing seasonal influenza virus infection and its complications. Antiviral prescription medications are also available for influenza prophylaxis and treatment; however, antiviral chemoprophylaxis is not a substitute for annual influenza vaccination (Grohskopf et al 2018).
- Initiation of antiviral therapy to treat influenza is recommended as early as possible for patients with confirmed or suspected influenza who are hospitalized, have severe, complicated, or progressive illness, or are at higher risk for influenza complications (Fiore et al 2011). Additionally, due to the increased influenza activity and a lower vaccine effectiveness for the 2017-2018 influenza season, a December 2017 CDC advisory recommended that all hospitalized patients and all high-risk patients (hospitalized or outpatient) with suspected influenza should be treated as soon as possible with a neuraminidase inhibitor. Although initiation within 2 days of symptom onset is ideal, the CDC stated that benefit may still be seen even when treatment is initiated later (CDC 2017).
- Three classes of antiviral medications are available and included in this review. The adamantanes include amantadine and Flumadine (rimantadine). The neuraminidase inhibitors include Rapivab (peramivir), Relenza (zanamivir), and Tamiflu (oseltamivir). Currently, the only endonuclease inhibitor on the market is Xofluza (baloxavir marboxil), which was approved by the Food and Drug Administration (FDA) in late October 2018.
- Although the adamantanes are active against influenza A virus, resistance is high among currently circulating virus strains. The adamantanes lack activity against influenza B virus. Therefore, amantadine and rimantadine are not recommended for treatment or chemoprophylaxis during the current influenza season (CDC 2018[b]).
- The neuraminidase inhibitors are active against both influenza A and influenza B viruses. Rapivab (peramivir), Relenza (zanamivir), and oseltamivir are the only antivirals recommended for the current influenza season in the United States (CDC 2018[b]).
- Since Xofluza (baloxavir) was recently approved, it has not been incorporated into existing guidelines. The CDC plans to revise their 2018-2019 recommendations to incorporate baloxavir into their recommendations (CDC 2018[b]).
- Circulating influenza viruses are constantly evolving, and drug-resistant influenza virus strains have been reported. Prescribers should refer to influenza drug susceptibility patterns and treatment effects when selecting an antiviral agent (CDC 2018[b]).
- Medispan class: Antiparkinson, Dopaminergic and Influenza Agents. The only agent from the Antiparkinson, Dopaminergic category that will be included in this review is amantadine for the influenza indication.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Generic Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>amantadine</td>
<td>✓</td>
</tr>
<tr>
<td>Flumadine (rimantadine)</td>
<td>✓</td>
</tr>
<tr>
<td>Rapivab (peramivir)</td>
<td>-</td>
</tr>
<tr>
<td>Relenza (zanamivir)</td>
<td>-</td>
</tr>
<tr>
<td>Tamiflu (oseltamivir)</td>
<td>-</td>
</tr>
<tr>
<td>Xofluza (baloxavir marboxil)</td>
<td>-</td>
</tr>
</tbody>
</table>
### INDICATIONS

#### Table 2. Food and Drug Administration Approved Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>amantadine</th>
<th>Flumadine (rimantadine)</th>
<th>Rapivab³ (peramivir)</th>
<th>Relenza⁴ (zanamivir)</th>
<th>Tamiflu⁵ (oseltamivir)</th>
<th>Xofluza (baloxavir marboxil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis and treatment of signs and symptoms of infection caused by various strains of influenza A virus</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prophylaxis and treatment of illness caused by various strains of influenza A virus in adults (17 years and older)</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prophylaxis against influenza A virus in children (1 to 16 years of age)</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of acute uncomplicated influenza in patients 2 years and older who have been symptomatic for no more than 2 days</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prophylaxis of influenza in adults and pediatric patients aged 5 years and older</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Treatment of uncomplicated acute illness due to influenza A and B virus in adults and pediatric patients aged 7 years and older who have been symptomatic for no more than 2 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Prophylaxis of influenza A and B in patients 1 year and older</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Treatment of acute, uncomplicated illness due to influenza A and B infection in patients 2 weeks of age and older who have been symptomatic for no more than 48 hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
**CLINICAL EFFICACY SUMMARY**

### Adamantanes


- One systematic review assessed the efficacy of adamantanes in healthy adults by analyzing 20 prophylaxis and 13 treatment randomized trials comparing amantadine or rimantadine with placebo. For prophylaxis, amantadine was 61% better than placebo at reducing influenza risk (P<0.001). Although rimantadine was 72% better than placebo at preventing influenza, statistical significance was not achieved. There was significant heterogeneity between the prophylaxis trials, and only a small sample size was available for rimantadine compared to amantadine. For treatment, amantadine and rimantadine both reduced the duration of fever by 1 day. Both agents caused gastrointestinal side effects, but amantadine caused significantly more adverse effects in the central nervous system than rimantadine (Jefferson et al 2006[a]).

- Influenza A virus resistance to amantadine and rimantadine has developed over the years. During the 2009 to 2010 influenza season, 100% of the 18 influenza H3N2 viruses tested in the United States were resistant to adamantanes. Similarly, 99.8% of the pandemic H1N1 viruses tested were resistant to adamantanes. Due to influenza A virus resistance and lack of activity against influenza B virus, the adamantanes are not recommended for the current influenza season (CDC 2010[b], CDC 2018[b]).

### Neuraminidase inhibitors

- The neuraminidase inhibitors have demonstrated efficacy for their respective indications. Relenza (zanamivir) inhalation and oral oseltamivir are effective in both the prophylaxis and treatment of influenza A and B. Clinical trials have demonstrated a reduction in laboratory-confirmed influenza, illness, fever duration, secondary complications, and...
Numerous placebo-controlled trials have demonstrated the efficacy of neuraminidase inhibitors individually, but head-to-head trials directly comparing the agents are limited. One randomized, double-blind, placebo-controlled safety trial compared the use of oseltamivir, Relenza (zanamivir), and placebo in 390 healthy adults for influenza chemoprophylaxis over 16 weeks. The study showed that both treatments were well tolerated compared to placebo, and there were no discontinuations due to adverse events (Anekthananon et al 2013).

A Phase 3 multinational, multicenter, double-blind, randomized, noninferiority trial compared a single dose of 300 or 600 mg IV Rapivab (peramivir) to 5 days of oral oseltamivir in 1,091 patients with seasonal influenza. The primary endpoint, time to alleviation of influenza symptoms, had a median of 78.0 hours in patients receiving 300 mg of Rapivab (peramivir), 81.0 hours in patients receiving 600 mg of Rapivab (peramivir), and 81.8 hours in patients receiving oseltamivir. Both strengths of Rapivab (peramivir) were noninferior to oseltamivir with a noninferiority margin of 0.170.

Although studies have evaluated Rapivab (peramivir) in hospitalized patients and in children, both of these populations are not included in the FDA-approved labeling (De Jong et al 2014, Ison et al 2014, Ison et al 2013, Sugaya et al 2012). The Phase 3 clinical trial of Rapivab (peramivir) in hospitalized influenza patients failed to meet its primary endpoint of reducing the time to clinical resolution compared to placebo. There are no clinical endpoints that have been validated for clinical trials of neuraminidase inhibitors treating hospitalized patients with influenza (FDA 2014). In 2009, the United States issued an Emergency Use Authorization (EUA) program allowing Rapivab (peramivir) for the treatment of suspected or confirmed 2009 H1N1 influenza A virus infection in hospitalized patients (Birnkrant 2009). Patients eligible for treatment were hospitalized, unable to tolerate or unresponsive to other available antivirals, or lacked a dependable oral or inhalation drug delivery route. The Public Health Emergency determination for the 2009 H1N1 influenza pandemic expired on June 23, 2010 (CDC 2010[a]).

One systematic review analyzed 20 oseltamivir and 26 Relenza (zanamivir) randomized, placebo-controlled trials in order to better define their efficacy and safety. In prophylaxis trials, the risk of symptomatic influenza was reduced by 3.05% in patients treated with oseltamivir compared to placebo and 1.98% in patients treated with Relenza (zanamivir) compared to placebo. In adults, the time to first alleviation of symptoms was reduced by 0.7 days (P<0.0001) in patients receiving oseltamivir compared to placebo and 0.6 days (P=0.00001) in patients receiving Relenza (zanamivir) compared to placebo. Oseltamivir significantly reduced the time to alleviation of symptoms in non-asthmatic children and decreased the incidence of self-reported pneumonia. Relenza (zanamivir) significantly reduced the risk of bronchitis in adults with influenza. Neither treatment was a significant improvement over placebo in time to symptom alleviation in asthmatic children or risk of hospitalizations, otitis media, or sinusitis. Many studies included were at a high risk of selection bias due to inadequate reporting and a high risk of attrition bias due to selective reporting. All trials were sponsored by the manufacturers (Jefferson et al 2014).

In a systematic review of other published systematic reviews and meta-analyses, treatment of influenza with neuraminidase inhibitors (oseltamivir or zanamivir) was found to be likely effective in reducing mortality amongst hospitalized patients; the odds of mortality appeared especially lower when therapy was started early (≤ 48 hours of symptom onset). When used for treatment in the general population, these agents appear to reduce the duration of symptoms by approximately 0.5 to 1 day. Both oseltamivir and zanamivir were found likely to be effective at reducing secondary symptomatic influenza transmission when used prophylactically (Doll et al 2017).
There was no significant difference between treatments in the incidence of complications of influenza infection (Kohno et al 2011).

- A meta-analysis including 2 controlled clinical trials and 5 observational trials (N = 1676) examined the comparative efficacy of IV Rapivab (peramivir) and oral oseltamivir in the treatment of seasonal influenza. No significant differences between treatments were noted for the following outcomes: mortality, hospital length of stay, virus titer 48 hours after admission, and incidence of adverse events. However, the time to resolution of influenza symptoms or fever was shorter with Rapivab (peramivir) versus oseltamivir treatment (mean difference, -7.17 hours; p < 0.01) (Lee et al 2017).

- Observational studies comparing the clinical efficacy of Rapivab (peramivir), Relenza (zanamivir), and oseltamivir in treating influenza have demonstrated within-class variation in the time to alleviation of influenza symptoms. The lack of robust data from randomized, head-to-head trials prevents the recommendation of one neuraminidase inhibitor over another. Local and seasonal susceptibility trends, route of administration, and patient-specific factors such as age and compliance should be taken into account when selecting an agent for antiviral drug therapy (Kawai et al 2008, Takemoto et al 2013).

- While influenza virus strains resistant to specific neuraminidase inhibitors have emerged, overall resistance remains low. According to surveillance data on seasonal influenza virus strains, the rate of resistance to oseltamivir is 1 to 3% and resistance to Relenza (zanamivir) is less than 1% (Li et al 2015).

Endonuclease inhibitor

- In a Phase 3, double-blind, randomized, placebo- and oseltamivir-controlled trial (CAPSTONE-1), 1436 patients 12 to 64 years of age with influenza-like illness were randomized in a 2:2:1 ratio to receive a single, weight-based oral dose of baloxavir, treatment-dose oseltamivir for 5 days, or matching placebo. The primary endpoint, time to alleviation of influenza symptoms, was 53.7 hours (95% confidence interval [CI], 49.5 to 58.5) with baloxavir compared with 80.2 hours (95% CI, 72.6 to 87.1) with placebo (p < 0.001). The median time to alleviation of symptoms was similar between baloxavir and oseltamivir (53.5 hours and 53.8 hours, respectively). Treatment-related adverse events were more common with oseltamivir (8.4%) than baloxavir (4.4%; p = 0.009), or placebo (3.9%) (Hayden et al 2018).

CLINICAL GUIDELINES

- Annual influenza vaccination is the most effective method for preventing seasonal influenza virus infection and its complications. All individuals 6 months of age and older should receive an influenza vaccination each year, unless contraindicated. The prophylactic antiviral administration is not a substitute for early influenza vaccination (Grohskopf et al 2018).

- Amantadine and rimantadine are not recommended for antiviral treatment or prophylaxis of influenza A virus strains in the United States due to high rates of resistance (American Academy of Pediatrics [AAP] 2018, Fiore et al 2011, CDC 2018[b]).

- The antivirals recommended by the CDC for the current influenza season include oseltamivir, Relenza (zanamivir) and Rapivab (peramivir). Routine or widespread use of antivirals for chemoprophylaxis is not recommended due to concerns for viral resistance. Oseltamivir and Relenza (zanamivir) are recommended for post-exposure prophylaxis in patients who are severely immunosuppressed and in patients at a high risk for influenza complications who are either not a candidate for vaccination or received their annual vaccination less than 2 weeks prior to exposure (CDC 2018[b]).

- Treatment of influenza with antiviral therapy is recommended as early as possible for patients with confirmed or suspected influenza who are hospitalized, have severe, complicated, or progressive illness, or are at a high risk for complications (CDC 2018[b]).

- Populations at a high risk for influenza complications and recommended to receive antiviral treatment include children younger than 2 years old, adults age 65 and above, pregnant or postpartum women, American Indians, Alaska Natives, obese patients with a body mass index (BMI) of 40 kg/m² and above, patients younger than 19 years old receiving long-term treatment with aspirin, residents of nursing homes, and patients with immunosuppression, chronic disorders (eg, pulmonary, cardiovascular, renal, hepatic, hematological and metabolic), or neurologic conditions (CDC 2018[b]). Additionally, due to the increased influenza activity and a lower vaccine effectiveness for the 2017-2018 influenza season, a December 2017 CDC advisory recommends that all hospitalized patients and all high-risk patients (hospitalized or outpatient) with suspected influenza should be treated as soon as possible with a neuraminidase inhibitor. Although initiation within 2 days of symptom onset is ideal, the CDC is stating that benefit may still be seen even when treatment is initiated later (CDC 2017).
• Antiviral therapy works best when administered within 48 hours of symptom onset. Treatment initiation should not be delayed for the results of diagnostic testing. Early administration of antivirals may shorten the duration of fever, reduce the risk of influenza-related complications such as otitis media and pneumonia, reduce death in hospitalized patients, and decrease the duration of hospitalization in hospitalized children (CDC 2018[b]).

SAFETY SUMMARY
• Common adverse events with adamantanes include nausea, dizziness, insomnia, headache, anorexia, dry mouth, and agitation.
• Amantadine and rimantadine should be used with caution in patients with epilepsy due to an increased risk for seizures.
• Amantadine has anticholinergic effects and is contraindicated in patients with untreated angle closure glaucoma. There have also been reports of death from overdose and suicide attempts with amantadine.
• Common adverse events with neuraminidase inhibitors include nausea, vomiting, and headache. The most common adverse effect with Rapivab (peramivir) is diarrhea.
• All 3 neuraminidase inhibitors have labeled warnings for neuropsychiatric events such as hallucinations and delirium. Patients should be monitored for signs of abnormal behavior.
• Oseltamivir and Rapivab (peramivir) have warnings for serious skin and hypersensitivity reactions, including Stevens-Johnson Syndrome.
• Relenza (zanamivir) has a warning for bronchospasm and should not be used in patients with asthma or chronic obstructive pulmonary disease. It is also contraindicated in patients with milk protein allergies.
• Common adverse events with Xofluza (baloxavir marboxil) include diarrhea, headache, bronchitis, nausea, and nasopharyngitis.

DOSING AND ADMINISTRATION

<table>
<thead>
<tr>
<th>Drug</th>
<th>Available Formulations</th>
<th>Route</th>
<th>Usual Recommended Frequency</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>amantadine</td>
<td>Capsules, oral solution, tablets</td>
<td>Oral</td>
<td>Once daily or twice daily</td>
<td>Should be taken for 10 days following a known exposure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adults: 200 mg once daily or 100 mg twice daily</td>
<td>If using in conjunction with vaccine until antibody response, then take for 2 to 4 weeks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pediatric patients: 1 to 9 years: 4.4 to 8.8 mg/kg/day not to exceed 150 mg per day 9 to 12 years: 100 mg twice daily</td>
<td>Treatment of illness should be started within 24 to 48 hours of symptom onset and continued for 24 to 48 hours after symptoms disappear.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The safety and efficacy of amantadine in newborn infants and infants below the age of 1 year have not been established.</td>
<td>For adult patients intolerant to 200 mg daily dose because of central nervous system or other toxicities: 100 mg daily dose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Because amantadine is primarily excreted in the urine, it accumulates in the plasma and in the body when renal function declines. Thus, the dose of amantadine should be reduced in patients with renal impairment and in individuals who are 65 years of age or older according to the following:</td>
<td>For CrCl = 30 to 50 mL/min:</td>
</tr>
<tr>
<td>Drug</td>
<td>Formulation</td>
<td>Route</td>
<td>Dosage Regimen</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------------------------------------------------------------------------</td>
<td></td>
</tr>
</tbody>
</table>
| Flumadine (rimantadine) | Tablets     | Oral  | 200 mg 1st day, then 100 mg daily For CrCl = 15 to 29 mL/min: 200 mg 1st day, then 100 mg on alternate days For CrCl < 15 mL/min and HD: 200 mg every 7 days For patients ≥ 65 years: 100 mg once daily The dose of amantadine may need reduction in patients with congestive heart failure, peripheral edema, or orthostatic hypotension. | Twice daily  
**Adults (17 years and older)**  
Treatment: 100 mg twice daily for 7 days  
Prophylaxis: 100 mg twice daily  
**Pediatric patients**  
Prophylaxis in patients 1 to 9 years: 5 mg/kg/day, not to exceed 150 mg per day  
10 to 16 years: Refer to the adult dose  
The safety and efficacy of rimantadine in pediatric patients below the age of 1 year have not been established. | Treatment of illness should be started within 48 hours of symptoms. A suspension can be made from the tablets and is stable for 14 days. Dose adjustment in patients > 65 years: 100 mg once daily Dose adjustment in patients with CrCl < 29 mL/min: 100 mg daily Dose adjustment in patients with severe hepatic dysfunction: 100 mg daily |
<p>| Rapivab (peramivir)  | Injection   | IV    | 200 mg 1st day, then 100 mg daily For CrCl = 15 to 29 mL/min: 200 mg 1st day, then 100 mg on alternate days For CrCl &lt; 15 mL/min and HD: 200 mg every 7 days For patients ≥ 65 years: 100 mg once daily The dose of amantadine may need reduction in patients with congestive heart failure, peripheral edema, or orthostatic hypotension. | One time dose should be provided within 2 days of onset of influenza symptoms A single dose administered by IV infusion for a minimum of 15 minutes. Rapivab must be diluted prior to administration. Dose adjustment in adults and adolescents 13 years of age or older with CrCl = 30 to 49 mL/min: 200 mg Dose adjustment in pediatric patients 2 to 12 years of age with CrCl = 30 to 49 |</p>
<table>
<thead>
<tr>
<th>Drug</th>
<th>Formulation</th>
<th>Administration</th>
<th>Dose and Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Relenza (zanamivir)</strong></td>
<td>Inhalation powder (in blisters)</td>
<td>Oral inhalation via Diskhaler device</td>
<td>Once daily or twice daily, depending on the indication <strong>Treatment (≥ 7 years):</strong> 10 mg twice daily for 5 days <strong>Prophylaxis in household setting (≥ 5 years):</strong> 10 mg once daily for 10 days <strong>Prophylaxis in community outbreak (adults and adolescents):</strong> 10 mg once daily for 28 days</td>
</tr>
<tr>
<td><strong>Tamiflu (oseltamivir)</strong></td>
<td>Capsules, powder for oral suspension</td>
<td>Oral</td>
<td>Once daily or twice daily, depending on the indication <strong>Patients ≥ 13 years</strong> <strong>Treatment:</strong> 75 mg twice daily for 5 days <strong>Prophylaxis:</strong> 75 mg once daily for at least 10 days following close contact with an infected individual and up to 6 weeks during a community outbreak. In immunocompromised patients, may be continued for up to 12 weeks. <strong>Patients &lt; 13 years</strong> <strong>Treatment:</strong> Start treatment within 48 hours of symptom onset or close contact with the infected individual. Taking with food may enhance tolerability. In an emergency, a suspension can be made from capsules. Dosage adjustment is recommended for patients with a CrCl between 10 and 60 mL/minute and for patients with ESRD undergoing routine HD or CAPD. Not recommended for patients with ESRD not undergoing dialysis. No dosage adjustment for mild to moderate hepatic impairment.</td>
</tr>
</tbody>
</table>
### CONCLUSION

- The first line of protection against influenza is vaccination. All individuals 6 months of age and older without contraindications should receive yearly influenza vaccination (AAP 2018, Fiore et al 2011, Grohskopf et al 2018).

---

<table>
<thead>
<tr>
<th>CAPD=continuous ambulatory peritoneal dialysis; CrCl =creatinine clearance; ESRD=end stage renal disease; HD=hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>See the current prescribing information for full details</em></td>
</tr>
</tbody>
</table>
• Antivirals are available for the prevention and treatment of influenza. Overall, the adamantanes and neuraminidase inhibitors have demonstrated safety and efficacy for their respective indications. However, amantadine and rimantadine are not currently recommended due to high rates of resistance in circulating influenza virus strains (CDC 2018[b]).

• Relenza (zanamivir) and oseltamivir are both effective in preventing influenza but are not substitutes for annual vaccination. They are recommended as post-exposure chemoprophylaxis in patients with a high risk for influenza complications who are not sufficiently protected by vaccination (Fiore et al 2011, CDC 2018[b], Harper et al 2009, Panel on Opportunistic Infections 2018). Rapivab (peramivir) is not approved or recommended for influenza prophylaxis (CDC 2018[b]).

• Rapivab (peramivir), Relenza (zanamivir), and oseltamivir effectively treat influenza by reducing the duration of fever and illness. Initiation of treatment is recommended as soon as possible for patients with suspected influenza who are hospitalized, severely ill, or at high risk for influenza complications (AAP 2018, CDC 2017, CDC 2018[b], Fiore et al 2011, Harper et al 2009, Panel on Opportunistic Infections 2018).

• Xofluza (baloxavir marboxil) is a recently approved antiviral agent with a novel mechanism of action (inhibition of polymerase acidic (PA) endonuclease). It has not yet been incorporated into existing guidelines.

• Limited within-class comparisons prevent the recommendation of one neuraminidase inhibitor over another. Factors to consider when selecting an antiviral agent include the route of administration, seasonal and geographical susceptibility trends, and patient-specific factors such as age and compliance (Takemoto et al 2013).

• The most common adverse events with amantadine and rimantadine are nausea, insomnia, dizziness, headache, anorexia, dry mouth, and agitation. The adamantanes are associated with an increased risk for seizures.

• The most common adverse events with Relenza (zanamivir) and oseltamivir are headache, nausea, and vomiting. Diarrhea is the most common adverse event with Rapivab (peramivir). The neuraminidase inhibitors have a labeled warning for neuropsychiatric events such as delirium and abnormal behavior leading to injury.

• The most common adverse events with Xofluza (baloxavir) are diarrhea, headache, bronchitis, nausea, and nasopharyngitis.

REFERENCES

• Amantadine capsules [package insert], Sunrise, FL: Cipla USA, Inc.; May 2017.


• Amantadine tablets [package insert], Sunrise, FL: Cipla USA, Inc.; May 2017.


Data as of November 7, 2018 JZ-U/CK-U/AKS

This information is considered confidential and proprietary to OptumRx. It is intended for internal use only and should be disseminated only to authorized recipients. The contents of the therapeutic class overviews on this website ("Content") are for informational purposes only. The Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Patients should always seek the advice of a physician or other qualified health provider with any questions regarding a medical condition. Clinicians should refer to the full prescribing information and published resources when making medical decisions.


Xofluza [package insert], South San Francisco, CA: Genentech, Inc; October 2018.

Publication Date: November 12, 2018