INTRODUCTION

- Diabetes mellitus affects more than 30 million people in the United States (U.S.) (Centers for Disease Control and Prevention [CDC] 2017).
- Diabetes mellitus is defined as a group of metabolic disorders characterized by hyperglycemia that result from defects in the secretion and action of insulin (American Diabetes Association [ADA] Diabetes Basics 2018).
- The classification of diabetes includes 4 clinical classes: 1) type 1 diabetes mellitus (T1DM) which results from beta-cell (β-cell) destruction, usually leading to absolute insulin deficiency, 2) type 2 diabetes mellitus (T2DM) which results from a progressive insulin secretory defect on the background of insulin resistance, 3) other specific types of diabetes due to other causes, eg, genetic defects in β-cell function, genetic defects in insulin action, diseases of the exocrine pancreas (such as cystic fibrosis), and drug- or chemical-induced (such as in the treatment of human immunodeficiency virus/acquired immunodeficiency syndrome or after organ transplantation), and 4) gestational diabetes mellitus (GDM) (diabetes diagnosed during pregnancy that is not clearly overt diabetes) (ADA 2018).
- Insulin is the standard treatment for T1DM. Pharmacologic options for T2DM include sulfonylureas (SFUs), biguanides, thiazolidinediones (TZDs), meglitinides, alpha-glucosidase inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, amylinomimetics, sodium-glucose cotransporter 2 (SGLT2) inhibitors, combination products, and insulin.
- The GLP-1 receptor agonists (albiglutide, dulaglutide, exenatide, exenatide extended-release [ER], liraglutide, lixisenatide, and semaglutide) were developed to mimic the effects of endogenous GLP-1 and are Food and Drug Administration (FDA)-approved as adjunctive therapy to diet and exercise to improve glycemic control in adults with T2DM.
- Pramlintide is the only amylin analog, or amylinomimetic, in the class, and is FDA-approved as an adjunctive treatment with insulin in patients with T1DM or T2DM who have failed to achieve desired glucose control despite optimal insulin therapy. It is a synthetic analog of human amylin, a naturally occurring neuroendocrine hormone synthesized by pancreatic β-cells that contributes to glucose control during the post-prandial period.
- This review will focus on the GLP-1 receptor agonists and pramlintide and their respective FDA-approved indications for treatment of diabetes. Liraglutide (Saxenda) is also indicated as adjunctive therapy for chronic weight management; however, the use of liraglutide for this indication will not be included in this review.
- Medispan class: Endocrine and Metabolic Drugs; Incretin Mimetic Agents (GLP-1 Receptor Agonists) and Amylin Analogs

Table 1. Medications Included Within Class Review

<table>
<thead>
<tr>
<th>Drug</th>
<th>Generic Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adlyxin (lixisenatide)</td>
<td>-</td>
</tr>
<tr>
<td>Bydureon (exenatide ER)</td>
<td>-</td>
</tr>
<tr>
<td>Bydureon BCise (exenatide ER)</td>
<td>-</td>
</tr>
<tr>
<td>Byetta (exenatide)</td>
<td>-</td>
</tr>
<tr>
<td>Ozempic (semaglutide)</td>
<td>-</td>
</tr>
<tr>
<td>Symlin (pramlintide)</td>
<td>-</td>
</tr>
<tr>
<td>Tanzeum (albiglutide)*</td>
<td>-</td>
</tr>
<tr>
<td>Trulicity (dulaglutide)</td>
<td>-</td>
</tr>
<tr>
<td>Victoza (liraglutide)</td>
<td>-</td>
</tr>
</tbody>
</table>

*On July 26, 2017, the manufacturer announced plans to discontinue the manufacturing and sale of Tanzeum by July 2018 due to business reasons (Tanzeum Discontinuation FAQ 2017).

(DRUGS@FDA 2018, Orange Book: Approved Drug Products with Therapeutic Equivalence Evaluations 2018)
INDICATIONS

Table 2. FDA Approved Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Adlyxin (lixisenatide)</th>
<th>Byetta (exenatide)</th>
<th>Bydureon (exenatide ER)</th>
<th>Bydureon BCise (exenatide ER)</th>
<th>Ozempic (semaglutide)</th>
<th>Symlin (pramlintide)</th>
<th>Tanzeum (albiglutide)</th>
<th>Trulicity (dulaglutide)</th>
<th>Victoza (liraglutide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1DM, as an adjunctive treatment in patients who use mealtime insulin therapy and who have failed to achieve desired glucose control despite optimal insulin therapy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2DM, as an adjunctive treatment in patients who use mealtime insulin therapy and who have failed to achieve desired glucose control despite optimal insulin therapy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjunct to diet and exercise to improve glycemic control in adults with T2DM.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce the risk of major adverse cardiovascular events (cardiovascular death, non-fatal myocardial infarction [MI], or non-fatal stroke) in adults with T2DM and established cardiovascular disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Limitations of Use

<table>
<thead>
<tr>
<th>Limitation</th>
<th>Adlyxin (lixisenatide)</th>
<th>Byetta (exenatide)</th>
<th>Bydureon (exenatide ER)</th>
<th>Bydureon BCise (exenatide ER)</th>
<th>Ozempic (semaglutide)</th>
<th>Symlin (pramlintide)</th>
<th>Tanzeum (albiglutide)</th>
<th>Trulicity (dulaglutide)</th>
<th>Victoza (liraglutide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not recommended as first-line therapy for patients inadequately controlled on diet and exercise because of the uncertain relevance of the rodent C-cell tumor findings to humans. Prescribe only to patients for whom the potential benefits are considered to outweigh the potential risk.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has not been studied in patients with a history of pancreatitis. Consider other antidiabetic therapies in these patients.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not indicated in treatment of patients with T1DM or for treatment of patients with diabetic ketoacidosis. Not a substitute for insulin in these patients.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has not been studied in patients with severe gastrointestinal (GI) disease, including severe gastroparesis. Not recommended in patients with pre-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

This information is considered confidential and proprietary to OptumRx. It is intended for internal use only and should be disseminated only to authorized recipients. The contents of the therapeutic class overviews on this website ("Content") are for informational purposes only. The Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Patients should always seek the advice of a physician or other qualified health provider with any questions regarding a medical condition. Clinicians should refer to the full prescribing information and published resources when making medical decisions.
<table>
<thead>
<tr>
<th>Indication</th>
<th>Adlyxin (lixisenatide)</th>
<th>Byetta (exenatide)</th>
<th>Bydureon (exenatide ER)</th>
<th>Bydureon BCise (exenatide ER)</th>
<th>Ozempic (semaglutide)</th>
<th>Symlin (pramlintide)</th>
<th>Tanzeum (albiglutide)</th>
<th>Trulicity (dulaglutide)</th>
<th>Victoza (liraglutide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>existing severe GI disease.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has not been studied in patients with gastroparesis. Not recommended in patients with gastroparesis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not studied in combination with prandial/short-acting insulin.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Use with insulin has not been studied and is not recommended.</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Information on indications, mechanism of action, pharmacokinetics, and safety has been obtained from the prescribing information for the individual products, except where noted otherwise.

CLINICAL EFFICACY SUMMARY

Albiglutide

- The approval of albiglutide was based on 8 pivotal trials involving over 5000 patients as a part of the HARMONY phase 3 program (Tanzeum FDA Medical Review 2014, Tanzeum Prescribing Information 2017). The majority of the trials were multicenter (MC), randomized, double-blind (DB), placebo-controlled (PC) or active control (AC) studies in adult patients with inadequately controlled T2DM (HbA1c 7% to 10%); however, 3 trials were open-label (OL). The primary outcome in each trial was change in HbA1c from baseline at 26 to 104 weeks.
 - HARMONY 1 demonstrated that albiglutide 30 mg once weekly was superior to placebo in patients taking concurrent pioglitazone with or without metformin at 52 weeks, with a mean reduction in HbA1c of 0.8% (Reusch et al 2014).
 - HARMONY 2 compared both albiglutide 30 mg and 50 mg once weekly to placebo in patients treated with diet and exercise alone and found that both were superior to placebo at 52 weeks. The least squares mean difference from placebo in HbA1c was -0.84% with the 30 mg dose and -1.04% with the 50 mg dose (Nauck et al 2016).
 - HARMONY 3 demonstrated that albiglutide 30 mg to 50 mg once weekly was superior to placebo, sitagliptin 100 mg once daily, and glimepiride 2 to 4 mg daily in patients taking concurrent metformin at 2 years, with a mean reduction in HbA1c of 0.6% (Ahrén et al 2014).
 - HARMONY 4 was an OL trial comparing albiglutide (30 mg to 50 mg once weekly) to protocol-titrated insulin glargine in patients taking concurrent metformin with or without an SFU. In this study, albiglutide demonstrated noninferiority to insulin glargine in HbA1c improvement at 52 weeks (Weissman et al 2014).
 - HARMONY 5 compared albiglutide (30 mg to 50 mg once weekly) to placebo and pioglitazone (30 mg to 45 mg per day) in patients taking concurrent metformin and glimepiride. At week 52, albiglutide did not meet the pre-specified noninferiority margin compared to pioglitazone; however, it was superior to placebo and had a mean reduction in HbA1c of 0.6% (Home et al 2015).
 - HARMONY 6, another OL trial, demonstrated that albiglutide 30 mg to 50 mg once weekly was noninferior to insulin lispro 3 times daily in patients taking concurrent pioglitazone with or without metformin at 26 weeks, with a mean reduction in HbA1c of 0.8% (Rosenstock et al 2014).
 - HARMONY 7 was an OL study comparing albiglutide 50 mg once weekly to liraglutide 1.8 mg daily in patients taking concomitant metformin, TZD, SFU, or a combination of the medications. At week 32, the mean model adjusted change in HbA1c was -0.78% with albiglutide and -0.99% with liraglutide. Albiglutide failed to meet noninferiority (p = 0.085) (Pratley et al 2014).
The efficacy of exenatide as add-on therapy to metformin alone, an SFU alone, or metformin in combination with an SFU was evaluated in 3 PC, 30-week, randomized controlled trials (RCTs). In all trials, there were significant decreases in HbA1c with exenatide compared to placebo (p < 0.001, p < 0.002, and p < 0.0001, respectively) (Buse et al 2004, DeFronzo et al 2005, Kendall et al 2005). Extensions of these 30-week trials demonstrated that the benefits of exenatide are sustained (Blonde et al 2006, Buse et al 2007, Klonoff et al 2008, Ratner et al 2006, Riddle et al 2006). A trial evaluating exenatide as add-on therapy in patients currently taking a TZD found that at week 16, exenatide significantly decreased HbA1c (p < 0.001), fasting plasma glucose (FPG) (p < 0.001), and body weight (p < 0.001) compared to placebo (Zinman et al 2007).

When exenatide was compared to glyburide as add-on therapy to metformin, exenatide significantly decreased body weight and body mass index (BMI) (p < 0.001 for both), whereas the SFU caused significant increases in both (p < 0.05 for both). Both treatments significantly decreased HbA1c, FPG, and postprandial plasma glucose (PPG) (exenatide; p < 0.001 for all; glyburide; p < 0.001 for all). Only exenatide significantly improved insulin resistance (p < 0.01) and β-cell function (p < 0.05) (Derose et al 2010).

The EUREXA study compared the efficacy of exenatide and glimepiride as add-on therapy to metformin. Patients receiving exenatide exhibited greater reductions in HbA1c from baseline (-0.36%), compared to those receiving glimepiride (-0.21%; p = 0.002) (Gallwitz et al 2012).

Several trials have compared exenatide to insulin therapy as add-on therapy to metformin and/or an SFU (Bunck et al 2009, Bunck et al 2010, Davies et al 2009, Heine et al 2005, Nauck et al 2007, Secnik et al 2006). Similar improvements in HbA1c between treatments were observed in 3 of the trials while mixed results were observed for decreases in FPG. Specifically, in 2 trials, insulin therapy was “superior” in decreasing FPG (p value not reported and p < 0.0001), while in another trial there was no difference between the 2 treatments (p = 0.689). Insulin therapy was associated with an increase in body weight compared to a decrease with exenatide (Bunck et al 2009, Heine et al 2005, Nauck et al 2007).

Patient-reported health outcome measures demonstrated no differences between exenatide or insulin therapy; both achieved significant improvements from baseline. However, neither treatment improved Diabetes Treatment Flexibility Scores (p = 0.93 for both) (Secnik et al 2006).
• Exenatide once weekly was also compared to daily insulin glargine in diabetic patients inadequately controlled with OADs. Following 26 weeks of therapy, exenatide was found to be statistically noninferior to insulin glargine for the change in HbA1c from baseline to endpoint (Inagaki et al 2012).

Exenatide ER

• Approval of exenatide ER in the management of T2DM was based on the clinical evidence for safety and efficacy derived from the DURATION trials (1 through 5). Exenatide ER was added to existing antidiabetic regimens in 4 of the 5 trials (1, 2, 3, and 5). In contrast, DURATION-4 compared exenatide ER, metformin, pioglitazone, and sitagliptin all as monotherapy (Bergenstal et al 2010, Blevins et al 2011, Diamant et al 2010, Drucker et al 2008, Russell-Jones et al 2012).

 ○ Overall, exenatide ER as add-on therapy to existing antidiabetic regimens significantly decreased HbA1c compared to exenatide (p < 0.005), sitagliptin (p < 0.0001), pioglitazone (p = 0.0165), and insulin therapy (p = 0.017), with no increased risk of hypoglycemia. In terms of decreases in body weight, exenatide ER was superior compared to sitagliptin (p = 0.0002) and pioglitazone (p < 0.0001), and similar compared to exenatide (p = 0.89) (Bergenstal et al 2010, Blevins et al 2011, Drucker et al 2008).

 ○ As expected, GI-related adverse events (AEs) were reported more commonly with the incretin-based therapies. When compared to exenatide, exenatide ER was associated with lower incidences of nausea (14.0% vs 35.0%) and vomiting (4.7% vs 8.9%), and higher incidences of diarrhea (9.3% vs 4.1%) and injection site-related AEs (13% vs 10%) (Blevins et al 2011).

 ○ In the DURATION-4 trial, the decrease in HbA1c achieved with exenatide ER monotherapy was superior compared to sitagliptin (p < 0.001) and similar compared to metformin (p = 0.62) and pioglitazone (p = 0.328). Exenatide ER and metformin were similar in terms of associated decreases in body weight, with exenatide ER achieving superiority compared to sitagliptin and pioglitazone. Overall, exenatide ER was associated with more GI-related AEs, with the exception of diarrhea which occurred at the highest frequency in patients receiving metformin (Diamant et al 2010).

 ○ In a post-hoc analysis of 4 clinical trials, patients were treated with weekly exenatide for 52 weeks. Patients had significant lowering of HbA1c, blood pressure and low density lipoprotein (LDL) levels without an increase in weight or hypoglycemia (Bergenstal et al 2013).

 ○ The DURATION-6 trial compared HbA1c reductions between liraglutide once daily and exenatide once weekly in patients with T2DM previously treated with lifestyle modifications and oral agents. Both therapies resulted in improvements in glycemic control; however, greater reductions were noted with liraglutide (Buse et al 2013).

 ○ Bydureon BCise is a new formulation of Bydureon that is administered via an autoinjector device. It was approved based on the results of two 28-week, OL, AC trials. In the DURATION-NEO-1 trial, Bydureon BCise 2 mg once weekly achieved a statistically significant HbA1c reduction vs Byetta 10 mcg twice daily (p < 0.05) in patients with T2DM inadequately controlled with diet and exercise alone or with a stable regimen of metformin, an SFU, a TZD, or a combination of any 2 of these agents. In the DURATION-NEO-2 trial, Bydureon BCise 2 mg once weekly achieved a statistically significant HbA1c reduction vs placebo (p < 0.05) in patients with T2DM on metformin. The difference vs sitagliptin was -0.28% (95% CI, -0.62% to -0.02%) (Bydureon BCise Prescribing Information 2017, Gadde et al 2017, Wysham et al 2017).

Liraglutide

• Approval of liraglutide in the management of T2DM was based on the clinical evidence for safety and efficacy derived from the LEAD trials (1 through 6). The LEAD trials evaluated liraglutide monotherapy (LEAD-3); add-on therapy to an SFU (LEAD-1), metformin (LEAD-2), metformin plus a TZD (LEAD-4), metformin plus an SFU (LEAD-5); and monotherapy head-to-head with exenatide (LEAD-6).

 ○ In LEAD-1, liraglutide was compared to placebo or rosiglitazone as add-on therapy to an SFU. After 26 weeks, liraglutide (0.6, 1.2, and 1.8 mg per day) significantly decreased HbA1c compared to placebo (p < 0.0001 for all), with only higher doses achieving superiority compared to rosiglitazone (p < 0.001 for both) (Marre et al 2009).

 ○ In LEAD-2, liraglutide was compared to placebo and an SFU as add-on therapy to metformin. Liraglutide significantly decreased HbA1c compared to placebo; however, similar decreases were observed with liraglutide compared to the SFU. Liraglutide was associated with significant decreases in body weight compared to placebo (p < 0.01) and the SFU (p < 0.001) (Nauck et al 2009). Results of an 18-month OL extension trial were consistent with the DB study (Nauck et al 2013).

 ○ In LEAD-3, liraglutide was compared to an SFU as monotherapy, and liraglutide was superior in decreasing HbA1c (p = 0.0014 and p < 0.0001 for liraglutide 1.2 mg and 1.8 mg, respectively). In addition, increases in body weight were reported with the SFU, while liraglutide significantly decreased body weight (p = 0.027) (Garber et al 2009). In a 1-
In LEAD-4 and LEAD-5, lixisenatide was compared to placebo as add-on therapy to metformin plus an SFU and to a TZD. LEAD-5 also had an OL arm of insulin therapy. Results achieved with lixisenatide in terms of decreases in HbA1c, body weight, and FPG compared to placebo were similar to those observed in the other LEAD trials (Russell-Jones et al 2009; Zinman et al 2009). When compared to insulin therapy, decreases in HbA1c (p = 0.0015) and body weight (p < 0.001) and improvements in β-cell function (p = 0.0019) were significantly greater with lixisenatide. It was noted that decreases in PPG were not different between the 2 treatments, and the likelihood of patients achieving FPG goals were also similar (Russell-Jones et al 2009).

LEAD-6 was a head-to-head trial comparing lixisenatide to exenatide as add-on therapy to existing antidiabetic treatment regimens. Lixisenatide significantly decreased HbA1c compared to exenatide (1.12% vs 0.79%; p < 0.0001), and a significantly greater proportion of patients receiving lixisenatide achieved HbA1c goals of < 7%. Significant decreases in FPG were also achieved with lixisenatide (p < 0.0001); however, exenatide significantly decreased PPG after breakfast and dinner (p < 0.0001 and p = 0.0005) (Buse et al 2009). A 14-week, extension trial revealed that patients who were switched from exenatide to lixisenatide achieved additional glycemic control and cardiometabolic benefits (Buse et al 2010).

Lixisenatide

- The approval of lixisenatide was based on several phase 3 trials as part of the GetGoal clinical trial program. Lixisenatide 20 mcg once daily was evaluated as monotherapy, in combination with OADs, and in combination with basal insulin (with or without OADs). Its efficacy was compared with placebo, exenatide, and insulin glulisine. The primary endpoint, the difference in change in HbA1c from baseline to trial end between the lixisenatide and comparator groups, was assessed at varying time points ranging between 12 and 26 weeks.

- GetGoal-Mono found that lixisenatide 20 mcg once daily as monotherapy resulted in significantly larger improvements in HbA1c at 12 weeks compared to placebo in patients with T2DM inadequately controlled on diet and exercise (p < 0.0001) (Fonseca et al 2012).

- GetGoal-F1 was a DB study which found that lixisenatide 20 mcg once daily as add-on therapy to metformin was superior vs placebo in terms of HbA1c reduction from baseline to week 24. The least squares mean change from baseline was -0.26% for the placebo group vs -0.72% for the lixisenatide group. The difference vs placebo was -0.46% (p < 0.0001) (Adlyxin Prescribing Information 2016, Bolli et al 2014).

- GetGoal-M-Asia demonstrated superiority of lixisenatide 20 mcg once daily as add-on therapy to metformin with or without an SFU compared to placebo in terms of HbA1c reduction from baseline to week 24 (Yu et al 2014).

- GetGoal-S was a 24-week, DB study which found that lixisenatide 20 mcg once daily in combination with an SFU with or without metformin resulted in significantly greater improvement in glycemic control than placebo; the difference from placebo in change in HbA1c was -0.58% (p < 0.0001) (Adlyxin Prescribing Information 2016, Rosenstock et al 2014).

- GetGoal-P was a 24-week, DB study which found that lixisenatide 20 mcg once daily in combination with pioglitazone or without metformin resulted in significantly greater improvement in glycemic control than placebo; the difference from placebo in change in HbA1c was -0.48% (p < 0.0001) (Adlyxin Prescribing Information 2016, Pinget al 2013).

- In GetGoal-Duo 1, lixisenatide was compared to placebo as add-on therapy to basal insulin and metformin with or without a TZD. Treatment with lixisenatide resulted in a significant reduction in HbA1c at week 24 vs placebo (Riddle et al 2013a).

- In GetGoal-L, lixisenatide was compared to placebo as add-on therapy to basal insulin with or without metformin while in GetGoal-L-A, lixisenatide was compared to placebo as add-on therapy to basal insulin with or without an SFU. Both studies found that lixisenatide was superior to placebo in terms of HbA1c reduction from baseline to week 24 (Riddle et al 2013b, Seino et al 2012).

- GetGoal-Duo 2 was a 26-week, OL trial that compared lixisenatide to insulin glulisine once daily or 3 times daily for intensification of optimized insulin glargine ± metformin in patients with T2DM uncontrolled on basal insulin ± OADs (ie, an SFU and/or a DPP-4 inhibitor, and/or a glinide). Lixisenatide was found to be noninferior to both insulin glulisine regimens in terms of HbA1c reduction from baseline to week 26. However, lixisenatide provided less HbA1c reduction than insulin glulisine 3 times daily and the difference was statistically significant; the least squares mean difference of lixisenatide vs insulin glulisine 3 times daily was 0.23 (p = 0.0002) (Adlyxin Prescribing Information 2016, Rosenstock et al 2016).

- GetGoal-X was a 24-week, OL trial that evaluated lixisenatide vs exenatide twice daily as add-on therapy to metformin. Lixisenatide met the pre-specified noninferiority margin vs exenatide twice daily for the difference in
Cardiovascular (CV) outcomes

- Several RCTs designed to assess the impact of incretin-based therapy on CV outcomes are in progress, including trials for albiglutide (HARMONY Outcomes, results expected in March 2018) and dulaglutide (REWIND, results expected in July 2018) (ClinicalTrials.gov [NCT01394952, NCT02465551] 2018).

- A MC, DB, PC, RCT (EXSCEL trial; N = 14,752) was conducted to evaluate the long-term effects of exenatide ER vs placebo, as added to usual care, on CV outcomes in patients with T2DM with or without previous CV disease. A total of 73.1% of patients had previous CV disease, and the median follow-up was 3.2 years. A primary composite outcome event (CV death, non-fatal MI, or non-fatal stroke) occurred in 11.4% of patients in the exenatide ER group vs 12.2% in the placebo group (hazard ratio [HR], 0.91; 95% confidence interval [CI], 0.83 to 1.00). Thus, exenatide ER was found to be noninferior to placebo with respect to safety (p < 0.001), but not superior to placebo with respect to efficacy (p = 0.06). The risk of death from any cause was 6.9% vs 7.9% in the exenatide ER and placebo groups, respectively (HR, 0.86; 95% CI, 0.77 to 0.97); the difference was not statistically significant on the basis of the hierarchical testing plan. The rates of death from CV causes, nonfatal MI, nonfatal stroke, and hospitalization for heart failure did not differ significantly between groups (Holman et al 2017).

- A MC, DB, PC, RCT (LEADER trial; N = 9340) was conducted to evaluate the long-term effects of liraglutide vs placebo on CV outcomes in patients with T2DM and high CV risk. The median follow-up was 3.8 years. It was found that the primary composite outcome (CV death, non-fatal MI, or non-fatal stroke) occurred in fewer patients in the liraglutide...
Meta-analyses

A systematic review and mixed-treatment comparison analysis of GLP-1 receptor agonists found that there were no differences in efficacy within the short-acting (exenatide or lixisenatide) or long-acting (albiglutide, dulaglutide, exenatide ER, liraglutide) groups. However, dulaglutide, liraglutide, and exenatide ER were superior to exenatide and lixisenatide at lowering HbA1c and FPG. There were no clinically meaningful differences between agents in weight loss or hypoglycemia. Albiglutide had the lowest risk of nausea and diarrhea, while exenatide ER had the lowest risk of vomiting (Htike et al 2016).

A meta-analysis found that overall, GLP-1 receptor agonists did not appear to be associated with an increase in the incidence of cholelithiasis (Monami et al 2017a, Monami et al 2017b).

A meta-analysis found that GLP-1 receptor agonists associated with a significant increase in the incidence of nephropathy (Monami et al 2017a).

A meta-analysis found that overall, GLP-1 receptor agonists did not appear to be associated with an increase in the incidence of retinopathy, and there was a reduction in the incidence of nephropathy vs comparators (Dicembrini et al 2017).

Pramlintide

The safety and efficacy of pramlintide in patients with T1DM have been established in PC, RCTs when administered in addition to existing insulin regimens. In a 52-week, DB, MC, PC study, pramlintide significantly reduced HbA1c from baseline compared to placebo (-0.39% vs -0.12%; p = 0.0071) and was also associated with a significant weight loss compared to placebo (p < 0.001) (Whitehouse et al 2002). In a second 52-week study, patients experienced a significant reduction in HbA1c when receiving pramlintide 60 mcg 3 times daily (-0.41 vs -0.18%; p = 0.012) and pramlintide 60...
GLP-1 receptor agonists are contraindicated in patients with hypersensitivity to any component of the products. With the exception of exenatide and lixisenatide, they are also contraindicated in those with a personal or family history of medullary thyroid carcinoma (MTC) or multiple endocrine neoplasia syndrome, type 2 (MEN 2).

All GLP-1 receptor agonists, except exenatide and lixisenatide, carry a boxed warning for risk of thyroid C-cell tumors. Other safety risks include pancreatitis (including fatal and non-fatal hemorrhagic or necrotizing pancreatitis), serious hypersensitivity reactions, immunogenicity, serious hypoglycemia when used in combination with SFUs or insulin, and renal impairment. Liraglutide also has a warning for acute gallbladder disease. Semaglutide carries a warning for diabetic retinopathy complications due to the results of the SUSTAIN 6 trial, which found a higher rate of events in patients treated with semaglutide vs placebo; the absolute risk was larger among patients with a history of diabetic retinopathy at baseline compared to those without.

Common AEs with these drugs include: nausea, diarrhea, vomiting, headache, and injection site reactions.

Pramlintide is contraindicated in patients with hypersensitivity to any component of the drug and in those with hypoglycemia unawareness and confirmed gastroparesis. It has a boxed warning for increased risk of hypoglycemia, particularly in patients with T1DM. Common AEs include nausea, headache, anorexia, and vomiting; the incidence of nausea tends to be higher at the beginning of treatment and decreases with time in most patients. Gradual titration of the dose minimizes the incidence and severity of nausea.

Albiglutide, exenatide, and pramlintide are Pregnancy Category C. Dulaglutide, exenatide ER, liraglutide, semaglutide, and lixisenatide are uncategorized in accordance with the FDA’s Pregnancy and Lactation Labeling Rule (PLLIR).

○ There are no adequate and well-controlled studies in pregnant women. These drugs should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. It is not known whether these drugs are excreted in human milk.
Due to the long washout period for albiglutide, discontinuation of the drug at least 1 month before a planned pregnancy should be considered.

DOsing AND ADMINISTRATION

Table 3. Dosing and Administration

<table>
<thead>
<tr>
<th>Drug</th>
<th>Available Formulations</th>
<th>Route</th>
<th>Usual Recommended Frequency</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adlyxin (lixisenatide)</td>
<td>Injection</td>
<td>SC</td>
<td>Once daily</td>
<td>Inject in the abdomen, thigh, or upper arm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Administer within 1 hour before the first meal of the day, preferably the same meal each day.</td>
</tr>
<tr>
<td>Bydureon (exenatide ER)</td>
<td>Injection</td>
<td>SC</td>
<td>Once weekly</td>
<td>Inject in the thigh, abdomen, or upper arm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May be given any time of day, with or without food.</td>
</tr>
<tr>
<td>Bydureon BCise (exenatide ER)</td>
<td>Injection</td>
<td>SC</td>
<td>Once weekly</td>
<td>Inject in the thigh, abdomen, or upper arm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May be given any time of day, with or without food.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Administer immediately after the powder is suspended.</td>
</tr>
<tr>
<td>Byetta (exenatide)</td>
<td>Injection</td>
<td>SC</td>
<td>Twice daily</td>
<td>Inject in the thigh, abdomen, or upper arm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inject within 60 minutes prior to the morning and evening meals (or before the 2 main meals of the day, approximately 6 hours or more apart).</td>
</tr>
<tr>
<td>Ozempic (semaglutide)</td>
<td>Injection</td>
<td>SC</td>
<td>Once weekly</td>
<td>Inject in the thigh, abdomen, or upper arm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May be given any time of day, with or without food.</td>
</tr>
<tr>
<td>Symlin (pramlintide)</td>
<td>Injection</td>
<td>SC</td>
<td>Prior to major meals</td>
<td>Inject in the thigh or abdomen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Administer immediately prior to each major meal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reduce mealtime insulin doses by 50%. Adjust insulin doses to optimize glycemic control once the target dose of pramlintide is achieved and nausea (if experienced) has subsided. The dose should be decreased if significant nausea persists.</td>
</tr>
<tr>
<td>Tanzeum (albiglutide)</td>
<td>Injection</td>
<td>SC</td>
<td>Once weekly</td>
<td>Inject in the thigh, abdomen, or upper arm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May be given any time of day, with or without food.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wait 15 minutes for the 30-mg pen and 30 minutes for the 50-mg pen after the lyophilized powder and diluent are mixed to ensure reconstitution.</td>
</tr>
<tr>
<td>Trulicity (dulaglutide)</td>
<td>Injection</td>
<td>SC</td>
<td>Once weekly</td>
<td>Inject in the thigh, abdomen, or upper arm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May be given any time of day, with or without food.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wait 15 minutes for the 30-mg pen and 30 minutes for the 50-mg pen after the lyophilized powder and diluent are mixed to ensure reconstitution.</td>
</tr>
<tr>
<td>Victoza (liraglutide)</td>
<td>Injection</td>
<td>SC</td>
<td>Once daily</td>
<td>Inject in the thigh, abdomen, or upper arm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May be given any time of day, with or without food.</td>
</tr>
</tbody>
</table>

Data as of February 14, 2018 YP-U/SS-U/AVD

This information is considered confidential and proprietary to OptumRx. It is intended for internal use only and should be disseminated only to authorized recipients. The contents of the therapeutic class overviews on this website ("Content") are for informational purposes only. The Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Patients should always seek the advice of a physician or other qualified health provider with any questions regarding a medical condition. Clinicians should refer to the full prescribing information and published resources when making medical decisions.
CONCLUSION

- The GLP-1 receptor agonists exenatide, exenatide ER, albiglutide, dulaglutide, liraglutide, lixisenatide, and semaglutide are incretin-based antidiabetic therapies that are FDA-approved as adjunctive therapy to diet and exercise in adult patients with T2DM. Additionally, liraglutide is indicated to reduce the risk of major adverse CV events in patients with established CV disease. Pramlintide is the only agent within the amylinomimetic medication class and is FDA-approved as adjunctive therapy in patients with T1DM or T2DM who use mealtime insulin therapy and who have failed to achieve desired glucose control despite optimal insulin therapy.
- The incretin mimetics are available as SC injections to be administered in the abdomen, thigh, or upper arm. Exenatide is administered twice daily (60 minutes prior to meals); liraglutide is administered once daily (independent of meals); and lixisenatide is administered once daily (1 hour prior to the first meal of the day). Exenatide ER, albiglutide, dulaglutide, and semaglutide are administered once weekly. Pramlintide is available as a SC injection to be administered immediately prior to each major meal.
- The incretin mimetics have been studied extensively in combination with, and in comparison to, a variety of antidiabetic therapies. The agents are significantly more effective than placebo in reducing HbA1c, FPG, PPG, and body weight. Efficacy data comparing treatment to an SFU, TZD, DPP-4 inhibitor or insulin is mixed, with the GLP-1 agonists achieving significantly greater or comparable benefits in glycemic outcomes.
- Several CV outcomes trials evaluating GLP-1 receptor agonists in patients with T2DM and high CV risk have been published. The LEADER trial demonstrated a statistically significant CV risk reduction with liraglutide vs placebo (Marso et al 2016a), whereas the ELIXA trial did not demonstrate a statistically significant difference between lixisenatide vs placebo (Pfeffer et al 2015) and the EXSCEL trial did not demonstrate a statistically significant difference between exenatide ER vs placebo (Holman et al 2017). Although the risk of MACE was lower with semaglutide vs. placebo in the SUSTAIN 6 trial, a superiority analysis was not prespecified (Marso et al 2016b). A larger CV outcome study is planned.
- Overall, the AE profiles of the GLP-1 receptor agonists are similar. With the exception of lixisenatide and exenatide, all of the agents have a boxed warning regarding the risk of thyroid C-cell tumors. Other warnings include increased risks of pancreatitis (including fatal and non-fatal hemorrhagic or necrotizing pancreatitis), serious hypersensitivity reactions, immunogenicity, serious hypoglycemia when used in combination with SFUs or insulin, and renal impairment. Liraglutide also has a warning for acute gallbladder disease, while semaglutide has a warning for diabetic retinopathy complications.
- According to current clinical guidelines, metformin remains the cornerstone of most T2DM treatment regimens. The incretin mimetics are recommended as a potential second-line treatment option to be added to metformin in patients not achieving glycemic goals. Clinical guidelines note a lower rate of hypoglycemia, established efficacy and safety profile when used in combination with metformin, demonstrated effectiveness in reducing PPG, and the potential for weight loss as advantages associated with the incretin mimetics compared to other antidiabetic agents. No one incretin mimetic is recommended or preferred over another in the general treatment algorithm; however, the ADA guidelines recommend that liraglutide and the SGLT2 inhibitors, empagliflozin and canagliflozin, should be considered in patients with long-standing suboptimally controlled T2DM and established atherosclerotic CV disease. Current clinical guidelines do not support the use of amylinomimetics in the management of T2DM. For T1DM, the addition of pramlintide to first-line insulin therapy may be considered to enhance glycemic control and to consider with weight management (ADA 2018; Garber et al 2018, Inzucchi et al 2015).

REFERENCES

Bydureon [package insert], Wilmington, DE: AstraZeneca Pharmaceuticals; October 2017.

Marre M, Shaw J, Brandle M, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycemic and weight control compared to adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med. 2009;26:268-278.

Seino Y, Min KW, Niemoller E, Takami A; EFC10887 GETGOAL-L Asia Study Investigators. Randomized, double-blind, placebo-controlled trial of the once-daily GLP-1 receptor agonist liraglutide in Asian patients with type 2 diabetes insufficiently controlled on basal insulin with or without a sulfonylurea (GetGoal-L-A). *Diabetes Obes Metab.* 2012;14(10):910-917.

Symlin [package insert], Wilmington, DE: AstraZeneca Pharmaceuticals; April 2016.

Tanzeum [package insert], Wilmington, DE: GlaxoSmithKline LLC; December 2017.

Trulicity [package insert], Indianapolis, IN: Eli Lilly and Company; August 2017.

Publication Date: March 19, 2018