INTRODUCTION

- Irritable bowel syndrome (IBS) is a gastrointestinal disorder that most commonly manifests as chronic abdominal pain and altered bowel habits in the absence of any organic disorder (Wald 2017).
- IBS may consist of diarrhea-predominant (IBS-D), constipation-predominant (IBS-C), IBS with a mixed symptomatology (IBS-M), or unclassified IBS (IBS-U). Switching between the subtypes of IBS is also possible (Ford et al 2018).
- IBS is a functional disorder of the gastrointestinal tract characterized by symptoms of abdominal pain, discomfort and bloating, and abnormal bowel habits with bouts of diarrhea and/or constipation. The exact pathogenesis of the disorder is unknown; however, it is believed that altered gastrointestinal tract motility, visceral hypersensitivity, autonomic dysfunction, and psychological factors indicate disturbances within the enteric nervous system, which controls the gastrointestinal system (Andresen et al 2008, Ford et al 2009, Quigley et al 2012, World Gastroenterology Organization [WGO] 2015).
- Prevalence estimates of IBS range from 10 to 12%, and it typically occurs in young adulthood (Ford et al 2018). IBS-D is more common in men, and IBS-C is more common in women (WGO 2015).
- Symptoms of IBS often interfere with daily life and social functioning (WGO 2015).
- The general goals of therapy in IBS are to alleviate the patient’s symptoms and to target any specific exacerbating factors (eg, medications, dietary changes), concerns about serious illness, stressors, or potential psychiatric comorbidities that may exist (Wald 2017).
- Non-pharmacological interventions to combat IBS symptoms include dietary modifications such as exclusion of gas-producing foods (eg, beans, prunes, Brussel sprouts, bagels, etc.), and consumption of probiotics, as well as psychosocial therapies (eg, hypnosis, biofeedback, etc.) (Ford et al 2018).
- Depending upon the clinical presentation of an individual’s IBS condition, a number of therapies exist to help alleviate the constellation of disease symptoms. Commonly used agents that are often initiated for disease control include poorly absorbable antibiotics such as rifaximin; antispasmodics (eg, dicyclomine, hyoscine, etc.); selective chloride channel activators (eg, lubiprostone); serotonin-3 receptor antagonists (eg, alosetron); guanylate cyclase-C agonists (eg, linaclotide, plecanatide); opioid receptor agonist (eg, eluxadoline), antidepressants such as tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs); select probiotics; and peppermint oil (Ford et al 2018).
- Amitiza (lubiprostone), Linzess (linaclotide), Motegrity (prucalopride), and Trulance (plecanatide) are indicated for the treatment of chronic idiopathic constipation (CIC). Symptoms of constipation are common with a prevalence of approximately 16% in adults overall and 33% in adults >60 years of age. Constipation is defined as fewer than three bowel movements (BMs) per week with symptoms that may include hard stools, a feeling of incomplete evacuation, abdominal discomfort, bloating, and distention. Initial treatment typically includes osmotic laxatives, stimulant laxatives, and increased fiber intake (American Gastroenterological Association [AGA] Medical Position Statement 2013, Bharucha et al 2013).
 - Prucalopride, a selective serotonin type 4 (5-HT4) receptor agonist, is a gastrointestinal prokinetic agent that stimulates colonic peristalsis (high-amplitude propagating contractions [HAPCs]), which increases bowel motility (Shin et al 2014).
 - The intestinal secretagogues, ie, lubiprostone, linaclotide, and plecanatide, exert their effects by increasing intestinal and colonic secretion of chloride-rich fluid into the intestinal lumen. There is no reported evidence indicating that these agents induce HAPCs.
- Opioid-induced constipation (OIC) is a frequent adverse event of opioid therapy. Opioids exert their action on the enteric nervous system causing dysmotility, decreased fluid secretion and sphincter dysfunction. Laxatives are typically prescribed but often are inadequate to completely relieve constipation (Brock et al 2012). There are 4 products are approved for use in OIC:
 - Amitiza (lubiprostone) is also Food and Drug Administration (FDA)-approved for the treatment of opioid-induced constipation (OIC) in adults with chronic, non-cancer related pain.
Relistor (methylnaltrexone) injection is an opioid receptor antagonist indicated for treatment of OIC in adults with chronic non-cancer pain and in patients with advanced illness or pain caused by active cancer who require opioid dosage escalation for palliative care. Relistor has also been FDA-approved in a tablet formulation, which is indicated for the treatment of OIC in adults with chronic non-cancer pain. Movantik (naloxegol) and Symproic (naldemedine) are once-daily oral peripherally acting mu-opioid receptor antagonists (PAMORA) indicated for the treatment of OIC in adult patients with chronic non-cancer pain.

For management of OIC, the AGA recommends laxatives as a first-line treatment (Crockett et al 2019). For patients with laxative-refractory OIC, naloxegol or naldemedine are recommended over no treatment, methylnaltrexone is suggested over no treatment, and there are no recommendations for the use of lubiprostone or prucalopride.

Zelnorm (tegaserod) was approved in July 2002 for short-term treatment of IBS-C in women and in August 2004 for treatment of CIC in men and women < 65 years of age. In March 2007, the FDA requested the manufacturer to discontinue the marketing of Zelnorm due to safety concerns related to increased rate of heart attack, stroke, and worsening heart-related chest pain. In July 2007, Zelnorm became available for use as a treatment investigational new drug (IND) protocol for IBS-C and CIC in women < 55 years of age meeting specific guidelines. However, in April 2008, the manufacturer discontinued its availability as a treatment IND. Zelnorm is currently available for use only in emergency situations that require patient hospitalization, and only with FDA authorization (Clinical Pharmacology 2019). Physicians with who are interested in using Zelnorm for an emergency situation may contact FDA’s Division for Drug Information about the emergency IND process (FDA Zelnorm information 2018).

In 2018, the Gastrointestinal Drugs Advisory Committee of the FDA voted in favor of reintroducing Zelnorm (tegaserod) onto the market for the treatment of IBS-C in women without a history of cardiovascular ischemic disease and who have no more than 1 risk factor for cardiovascular disease (Brown 2018). At the date of this review, Zelnorm has yet to be formally re-approved by the FDA.

IBS-D is an IBS subtype characterized mainly by loose or watery stools at least 25% of the time. Viberzi (eluxadoline) and Xifaxan (rifaximin) are both FDA-approved for the treatment of IBS-D. Viberzi is a mu-opioid receptor agonist and a schedule IV controlled substance; Xifaxan is a rifamycin antibacterial. Lotronex (alosetron) is FDA-approved with restrictions for the treatment of women who exhibit severe IBS-D and have failed conventional therapy.

The scope of this review will focus upon Amitiza (lubiprostone), Linzess (linaclotide), Lotronex (alosetron), Motegrity (prucalopride), Movantik (naloxegol), Relistor (methylnaltrexone bromide), Symproic (naldemedine), Trulance (plecanatide), Viberzi (eluxadoline), and Xifaxan (rifaximin) for their respective FDA-approved indications, which are outlined in Table 2.

Medispan Classes: Agents for CIC (Motegrity, Trulance); Gastrointestinal Chloride Channel Activators (Amitiza); IBS Agents (Lotronex, Linzess, Viberzi); Peripheral Opioid Receptor Antagonists (Movantik, Relistor, Symproic); Anti-infective Agents – Misc (Xifaxan)

Table 1. Medications Included Within Class Review

<table>
<thead>
<tr>
<th>Drug</th>
<th>Generic Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitiza (lubiprostone)</td>
<td>-</td>
</tr>
<tr>
<td>Linzess (linaclotide)</td>
<td>-</td>
</tr>
<tr>
<td>Lotronex (alosetron)</td>
<td>✓</td>
</tr>
<tr>
<td>Motegrity (prucalopride)</td>
<td>-</td>
</tr>
<tr>
<td>Movantik (naloxegol)</td>
<td>-</td>
</tr>
<tr>
<td>Relistor (methylnaltrexone bromide)</td>
<td>-</td>
</tr>
<tr>
<td>Symproic (naldemedine)</td>
<td>-</td>
</tr>
<tr>
<td>Trulance (plecanatide)</td>
<td>-</td>
</tr>
<tr>
<td>Viberzi (eluxadoline)</td>
<td>-</td>
</tr>
<tr>
<td>Xifaxan (rifaximin)</td>
<td>-</td>
</tr>
</tbody>
</table>

(Data as of March 8, 2019 KS-U/MG-U/ALS)

This information is considered confidential and proprietary to OptumRx. It is intended for internal use only and should be disseminated only to authorized recipients. The contents of the therapeutic class overviews on this website ("Content") are for informational purposes only. The Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Patients should always seek the advice of a physician or other qualified health provider with any questions regarding a medical condition. Clinicians should refer to the full prescribing information and published resources when making medical decisions.)
A network meta-analysis demonstrated linaclotide and lubiprostone to be superior to placebo for the treatment of CIC. Treatment with linaclotide resulted in a significant increase in the proportion of patients with ≥ 3 complete spontaneous bowel movements (CSBMs)/week compared with placebo with a relative risk (RR) of 1.96 (95% confidence interval [CI], 1.12 to 3.44), and was superior vs placebo with an increase over baseline by ≥ 1 CSBM/week (RR, 1.72; 95% CI, 1.18 to 2.52). For change from baseline in the number of SBMs/week, the weighted mean difference (WMD) with lubiprostone was 1.91 (95% CI, 1.41 to 2.41) and WMD with linaclotide was 2.11 (95% CI, 1.68 to 2.54) (Nelson et al 2017).

A meta-analysis demonstrated the total pooled treatment effect of spontaneous bowel movements (SBMs)/week in patients with CIC or IBS-C was greater in lubiprostone-treated patients compared with placebo (combined standardized difference in means, 0.419; 95% CI, 0.088 to 0.750; p < 0.001) (Li et al 2016).

A meta-analysis of 16 RCTs evaluated the safety and efficacy of prucalopride in the management of CIC (Sajid et al 2016). The primary outcome measure was the incidence of spontaneous bowel movements (SBMs) per week, and the secondary outcome measure was adverse events.

- Based on data from 9 trials, prucalopride 2 mg significantly reduced the incidence of SBMs per week compared with placebo (standardized mean difference [SMD] 0.34; 95% CI, 0.11 to 0.56; \(I^2 = 78\% \); p = 0.003).
- The risk of developing adverse events (eg, headache, abdominal cramps, excessive flatulence, dizziness, diarrhea, rash) was higher in the prucalopride 2 mg group (odds ratio [OR], 1.76; 95% CI, 1.33 to 2.34; \(I^2 = 53\% \); p < 0.0001).
- The majority of adverse events were reported within the first 24 hours of initiation of therapy and were transient.

A systematic review and meta-analysis evaluated the efficacy of serotonin type 4 (5-HT4) agonists, including prucalopride, velusetrag, and naronapride (not approved in the U.S.) for the treatment of CIC. 5-HT4 agonists were superior to control for all measured outcomes.

- The proportion of patients randomized to a 5-HT4 agonist who achieved a mean of ≥ 3 CSBMs per week was 27.5% vs 17.2% of patients randomized to control (RR, 1.85; 95% CI, 1.23 to 2.79; \(I^2 = 89\% \); p < 0.001).
- Overall, 46.7% of patients randomized to a 5-HT4 agonist achieved a mean increase of ≥ 1 CSBM per week over baseline vs 30.8% of control patients (RR, 1.57; 95% CI, 1.19 to 2.06; \(I^2 = 89\% \); p < 0.001).
- 5-HT4 agonists also showed significant improvement over control for patient-reported QOL measures.
- Adverse events were more common with 5-HT4 agonists than with control (RR, 1.25; 95% CI, 1.14 to 1.38) and included headache, diarrhea, nausea, and abdominal pain.

In another meta-analysis, treatment with linaclotide 145 mcg demonstrated significant improvements in the weekly frequency of CSBMs from baseline compared with placebo in patients with CIC (RR, 3.80; 95% CI, 2.20 to 6.55).

Results were similar for abdominal discomfort or bloating responders for linaclotide 145 mg vs placebo, with pooled RRs of 1.57 (95% CI, 1.26 to 1.97) and 1.97 (95% CI, 1.44 to 2.69), respectively (Videlock et al 2013).

A double-blind, placebo-controlled, multicenter, randomized controlled trial demonstrated that treatment with plecanatide 72 mcg improved the CSBM frequency over 12-weeks compared with placebo, with 13.4% of linaclotide-treated patients meeting responder requirements compared with 4.7% in the placebo group (95% CI, 1.8% to 5.2%) (Schoenfeld et al 2018).

Results from a long-term safety study illustrated that overall lubiprostone was well tolerated. The most commonly reported events were diarrhea, nausea, urinary tract infection, sinusitis, abdominal distension, and headache. Significant changes from baseline in hematology, laboratory values, vital signs, weight, body mass index and physical examination were not seen over the study duration (Chey et al 2012).

Two double-blind, placebo-controlled, multicenter, randomized controlled trials demonstrated that treatment with plecanatide 3 mg significantly increased weekly CSBM frequency as measured by the overall CSBM responder rate vs placebo (Study 1: 21.0% vs 10.2%; p < 0.001; Study 2: 20.1% vs 12.8%; p = 0.004) (DeMicco et al 2017, Miner et al 2017).

Six double-blind, placebo-controlled, multicenter, randomized controlled trials of similar design in adults (N = 2484) evaluated the safety and efficacy of prucalopride for the treatment of CIC in an integrated analysis of the results (Camilleri et al 2016, Prucalopride FDA briefing document 2018).

- The percentage of patients with a mean frequency of ≥ 3 CSBMs/week over a 12-week treatment period was significantly higher with prucalopride 2 mg/day (27.8%) vs placebo (13.2%) (OR, 2.68; 95% CI, 2.16 to 3.33; p < 0.001); the number needed to treat (NNT) with prucalopride was 8.8 (95% CI, 7.1 to 11.6). Efficacy and safety outcomes were not significantly different between men and women.
- The proportion of patients with a mean increase of ≥ 1 CSBM/week was 47.0% with prucalopride vs 29.9% with placebo (p < 0.001).
- Out of the 6 trials, the 24-week trial failed to demonstrate statistical significance for the primary endpoint after both 12 and 24 weeks, causing moderate heterogeneity. The reasons for the smaller treatment effect in this study remain unclear.
Due to its differing mode of action, prucalopride may be beneficial for patients with CIC who have an insufficient quantity of high-amplitude propagating contractions (HAPCs) or in those who do not respond to other medications (Camilleri et al 2016).

IBS

- In 2 meta-analyses, linaclotide demonstrated significant improvements in the FDA-defined composite endpoint of improvement in both daily worst abdominal pain scores and CSBM frequency from baseline compared to placebo after 12 weeks and demonstrated a similar result when compared over 26 weeks (Atluri et al 2014, Videlock et al 2013). More patients in the placebo treatment arm failed to achieve the FDA endpoint compared with patients treated with linaclotide (82.6% vs 66%; RR of failure to respond, 0.80; 95% CI, 0.76 to 0.85).
- A 2018 network meta-analysis evaluated the same intestinal secretagogues in patients with IBS-C, and ranked linaclotide 290 mcg daily as highest for efficacy (among tenapanor [investigational agent], lubiprostone, and plecanatide 3 and 6 mg); plecanatide 6 mg once daily was ranked highest for safety (Black et al 2018).
- The American College of Gastroenterology commissioned a systematic review to assess the overall efficacy of available therapies for the treatment of IBS (Ford et al 2018). The secondary objectives included assessing efficacy according to predominant stool pattern reported (IBS-C, IBS-D, and IBS-M), as well as evaluating adverse events. Parallel-group, randomized controlled trials comparing active interventions with either placebo or no therapy were appraised. Crossover trials were eligible for inclusion if extractable data were provided at the end of the first treatment period before crossover. The following were identified as “strong” recommendations for IBS treatments:
 - Fiber for overall symptom improvement in IBS patients: Quality of evidence is moderate.
 - TCAs for overall symptom improvement in IBS patients: Quality of evidence is high.
 - Linaclotide for overall symptom improvement in IBS-C patients: Quality of evidence is high.
 - Plecanatide or lubiprostone for overall symptom improvement in IBS-C patients: Quality of evidence is moderate.
 - There is insufficient evidence to recommend loperamide for use in IBS. Quality of evidence is very low.
- For the treatment of IBS-C, placebo-controlled trials demonstrated that lubiprostone had a significantly higher percentage of overall responders. In multiple 12-week studies, lubiprostone-treated patients reported significant improvements in abdominal pain/discomfort, stool consistency, straining, constipation severity, and quality of life (Drossman et al 2007, Drossman et al 2009, Johnson et al 2009).
- A meta-analysis concluded that the 5-hydroxytryptamine type 3 (5-HT3) antagonists as a class significantly improve symptoms of non-constipating or IBS-D in both men and women compared to placebo; however, these agents were also associated with a greater increase in the risk of causing constipation compared to placebo (Andresen et al 2008).
- Alosetron treatment has been shown to positively impact global symptoms, as well as pain and discomfort in non-constipated females with IBS. This analysis further supports the increased chance of developing constipation with alosetron compared to placebo (Cremonini et al 2003).
- The safety and efficacy of eluxadoline for treatment of IBS-D were established in 2 randomized, multicenter, multinational, double-blind, placebo-controlled, phase 3 clinical trials in which 2427 patients with IBS-D (meeting Rome III criteria), average abdominal pain scores greater than 3 on a 0 to 10 scale during the week prior to randomization, and a Bristol Stool Scale (BSS) of 5.5 or greater with at least 5 days of BSS of 5 or more during the week prior to randomization. Patients were randomly assigned to receive eluxadoline 75 mg, 100 mg, or placebo twice daily. The primary endpoint was defined by the simultaneous improvement in the daily worst abdominal pain score by 30% or more compared to the baseline weekly average and a reduction in the BSS to 5 or less on at least 50% of the days within a 12-week or 26-week time interval. From weeks 1 through 12, the primary endpoint was achieved by 23.9% of patients in the 75 mg group (p = 0.01) and 25.1% of patients in the 100 mg group (p = 0.004) versus 17.1% of patients in the placebo group. From weeks 1 through 26, 23.4% in the 75 mg group (p = 0.11) and 29.3% in the 100 mg group (p < 0.001) achieved the primary endpoint compared to 19% in the placebo group (Lembo et al 2016a).
- The safety and effectiveness of rifaximin for treatment of IBS-D were established in three double-blind, placebo-controlled trials.
 - In the first 2 trials, 1,258 patients with IBS-D (Rome II criteria) were randomly assigned to receive rifaximin 550 mg three times daily (n = 624) or placebo (n = 634) for 14 days, and then followed for a 10-week treatment-free period. The primary endpoint for both trials was the proportion of patients who achieved adequate relief of IBS signs and symptoms for at least 2 of 4 weeks during the month following 14 days of treatment. More rifaximin-treated patients reported improvements in abdominal pain and stool consistency than those on placebo (Trial 1: 47% vs 39%; p < 0.05; Trial 2: 47% vs 36%; p < 0.01 in rifaximin and placebo groups, respectively).
In 2 randomized, double-blind, placebo-controlled, 12-week studies, there were significantly more overall responders (based on improved abdominal pain and weekly CSBM from baseline) with plecanatide 3 mg vs placebo in patients with IBS-C (Study 1: 30% vs 18%; Study 2: 21% vs 14%) (Trulance prescribing information 2018).

OIC

Two randomized, double-blind, placebo-controlled trials, COMPOSE-1 and COMPOSE-2, were conducted in adult patients with chronic non-cancer pain and OIC to assess the efficacy and safety of naldemedine. The primary endpoint was the proportion of responders, where response was defined as ≥ 3 SBMs per week. Patients in COMPOSE-1 and COMPOSE-2 were randomized to receive naldemedine 0.2 mg (n = 274; n = 277) or placebo (n = 273; n = 276) once daily for 12 weeks. Results from both COMPOSE-1 and COMPOSE-2 showed that participants receiving naldemedine 0.2 mg experienced a significantly higher response compared to patients receiving placebo in both studies (COMPOSE-1 responders: 47.6% vs 34.6%; p = 0.002 and COMPOSE-2 responders: 52.5% vs 33.6%; p<0.0001, respectively).

Treatment-related adverse events due to gastrointestinal disorders were more common with naldemedine than with placebo in both studies (15% vs 7% and 16% and 7%, respectively) (Hale et al 2017).

COMPOSE-4 was a 2-week randomized, double-blind, placebo-controlled trial of naldemedine 0.2 mg in patients with OIC and cancer, and COMPOSE-5 was a 12-week, open-label extension study. In COMPOSE-4, there were significantly more SBM responders in the naldemedine group compared to placebo (71.1% vs 34.4%; p < 0.0001). Treatment-emergent adverse events were also higher with naldemedine vs placebo (44.3% vs 26.0%; p = 0.01). In the extension study, 80.2% of patients experienced a treatment-emergent adverse event, most commonly gastrointestinal adverse events (Katakami et al 2017).

A total of 1300 patients were enrolled in three, double-blind, randomized controlled trials evaluating lubiprostone compared to placebo in patients with chronic, non-cancer related pain on stable opioid therapy and constipation. In Study 1, overall responder rate, the primary outcome, was defined as ≥ 1 SBM improvement over baseline for all treatment weeks and ≥ 3 SBMs per week for at least 9 weeks of the 12-week study period. Lubiprostone (27.1%) had a significantly higher “overall responder rate” than placebo (18.9%; p = 0.03) (Jamal et al 2015). The primary outcome parameter for Study 2 and 3 was the mean change from baseline in SBM frequency at week 8. In Study 2, lubiprostone significantly increased the mean change from baseline in SBM frequency compared to placebo (p = 0.004). In Study 3, the difference was not statistically significant; however, Study 3 was the only study that enrolled patients who received diphenylheptane opioids such as methadone. Studies 2 and 3 have not been published in a peer-reviewed journal at this time.

A prospective, randomized, double-blind, placebo-controlled trial was conducted to evaluate the efficacy and safety of lubiprostone for relieving symptoms of OIC in adult patients with chronic non-cancer pain. OIC was defined as less than three SBMs per week. Patients were randomized to receive lubiprostone 24 mcg (n = 210) or placebo (n = 218) twice daily for 12 weeks. The primary outcome was defined as ≥ 1 SBM improvement over baseline for all treatment weeks and ≥ 3 SBMs per week for at least 9 weeks of the 12-week study period. Lubiprostone (27.1%) had a significantly higher “overall responder rate” than placebo (18.9%; p = 0.03) (Jamal et al 2015). The primary outcome parameter for Study 2 and 3 was the mean change from baseline in SBM frequency at week 8. Changes from baseline in SBM frequency rates were significantly higher at week 8 (p = 0.005) and overall (p = 0.004) in patients treated with lubiprostone compared with placebo. The most common treatment-related adverse events with lubiprostone and placebo were nausea (16.8% vs 5.8%, respectively), diarrhea (9.6% vs 2.9%, respectively), and abdominal distention (8.2% vs 2.4%, respectively). No lubiprostone-related serious adverse events occurred (Cryer et al 2014).

A 2013 systematic review evaluated pharmacological therapies for the treatment of OIC. A total of 14 randomized clinical trials of mu-opioid receptor antagonists were included. All treatments, including methylnaltrexone, naloxone, and alvimopan, were superior to placebo for the treatment of OIC. Lubiprostone was included in the review; however, the reporting of data precluded meta-analysis (Ford et al 2013).

In 2014, another systematic review of 21 randomized clinical trials evaluated 7 pharmacological treatments for OIC. Efficacy assessment was based on objective outcome measures (OOMs): BM frequency, BM within 4 hours, and time to first BM. Methylnaltrexone showed improvements in all three OOMs. Randomized controlled trials with naloxone and alvimopan tended to be effective for BM frequency measures. Naloxegol (≥12.5 mg) improved all OOMs. Though effectiveness of lubiprostone was demonstrated for all OOMs, group differences were small to moderate. CB-5945 (not FDA-approved) and prucalopride (not FDA-approved for OIC) tended to increase BM frequency, especially with doses of
This information is considered confidential and proprietary to OptumRx. It is intended for internal use only and should be disseminated only to authorized recipients. The contents of the therapeutic class overviews on this website ("Content") are for informational purposes only. The Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Patients should always seek the advice of a physician or other qualified health provider with any questions regarding a medical condition. Clinicians should refer to the full prescribing information and published resources when making medical decisions.
CIC. Parallel-group, randomized controlled trials comparing active interventions with either placebo or no therapy were evaluated. Crossover trials were eligible for inclusion if extractable data were provided at the end of the first treatment period, before crossover. The following were identified as “strong” recommendations for IBS and CIC treatments:

■ IBS
 ▪ There is insufficient evidence to recommend loperamide for use in IBS. Quality of evidence is very low.
 ▪ Mixed 5-HT 4 agonists/5-HT 3 antagonists are not more effective than placebo at improving symptoms of IBS-C. Quality of evidence is low.
 ▪ Linaclotide is superior to placebo for the treatment of IBS-C. Quality of evidence is high.
 ▪ Lubiprostone is superior to placebo for the treatment of IBS-C. Quality of evidence is moderate.

■ CIC
 ▪ Some medicinal and dietary fiber supplements increase stool frequency in patients with CIC. Quality of evidence is low.
 ▪ PEG is effective in improving symptoms of CIC. Quality of evidence is high.
 ▪ Lactulose is effective in improving symptoms of CIC. Quality of evidence is low.
 ▪ Sodium picosulfate and bisacodyl are effective in CIC. Quality of evidence is moderate.
 ▪ Prucalopride is more effective than placebo in improving symptoms of CIC. Quality of evidence is moderate.
 ▪ Linaclotide is effective in CIC. It is generally safe, with the main adverse event being diarrhea. Quality of evidence is high.
 ▪ Lubiprostone is effective in the treatment of CIC. Quality of evidence is high.

A 2018 systematic review and meta-analysis compared the efficacy of intestinal secretagogues (ie, linaclotide, lubiprostone, plecanatide, and tenapanor [currently under investigation for IBS-C]) for the treatment of chronic constipation or IBS-C ([Lasala et al 2018](#)). For patients with chronic constipation, intestinal secretagogues were superior to placebo for increasing the number of CSBMs per week (RR, 1.87; 95% CI, 1.24 to 2.83 [analysis included linaclotide, lubiprostone, and plecanatide]) and for achieving ≥ 3 SBMs per week (RR, 1.56; 95% CI, 1.31 to 1.85 [analysis included linaclotide and lubiprostone]). For those with IBS-C, intestinal secretagogues were superior to placebo for increase in CSBMs per week (RR, 2.44; 95% CI, 1.51 to 3.93 [analysis included linaclotide and tenapanor]) and for achieving ≥ 3 SBMs per week (RR, 1.97; 95% CI, 1.74 to 2.24 [analysis included linaclotide only]).

In a systematic review and meta-analysis, both linaclotide and plecanatide were efficacious for IBS-C and CIC compared to placebo. Diarrhea was more frequent with both drugs compared to placebo. In an indirect comparison, there were no differences between the 2 agents for efficacy in CIC, efficacy in IBS-C, frequency of diarrhea, or study withdrawal due to diarrhea ([Shah et al 2018](#)).

Another systematic review

INDICATIONS

Table 2. FDA Approved Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Amitiza (lubiprostone)</th>
<th>Linzess (linaclotide)</th>
<th>Lotronex (alosetron)</th>
<th>Motegrity (prucalopride)</th>
<th>Movantik (naloxegol)</th>
<th>Relistor (methylnaltrexone bromide)</th>
<th>Symproic (naldemedine)</th>
<th>Trulance (plecanatide)</th>
<th>Viberzi (eluxadoline)</th>
<th>Xifaxan (rifaximin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of CIC in adults</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of OIC in adults with chronic, non-cancer pain</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of OIC in patients with chronic pain related to prior cancer or its treatment who do not require frequent (eg, weekly) opioid dosage escalation.</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of OIC in patients with advanced illness or pain caused by active cancer who require opioid dosage escalation for palliative care</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data as of March 8, 2019 KS-U/MG-U/ALS

This information is considered confidential and proprietary to OptumRx. It is intended for internal use only and should be disseminated only to authorized recipients. The contents of the therapeutic class overviews on this website ("Content") are for informational purposes only. The Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Patients should always seek the advice of a physician or other qualified health provider with any questions regarding a medical condition. Clinicians should refer to the full prescribing information and published resources when making medical decisions.
Indication

<table>
<thead>
<tr>
<th>Indication</th>
<th>Amitiza (lubiprostone)</th>
<th>Linzess (linaclotide)</th>
<th>Lotronex (alosetron)</th>
<th>Motegrity (prucalopride)</th>
<th>Movantik (naloxegol)</th>
<th>Relistor (methylnaltrexone bromide)</th>
<th>Syproic (naldemedine)</th>
<th>Trulance (nalcladate)</th>
<th>Viberzi (eluxadoline)</th>
<th>Xifaxan (rifaximin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of IBS-C in women ≥ 18 years of age</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of IBS-C in adults</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of IBS-D in adults</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women with severe IBS-D who have:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• chronic IBS symptoms (generally lasting 6 months or longer)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• had anatomic or biochemical abnormalities of the gastrointestinal tract excluded, and not responded adequately to conventional therapy‡</td>
<td></td>
</tr>
</tbody>
</table>

*Effectiveness of Amitiza in the treatment of opioid-induced constipation in patients taking diphenylheptane opioids such as methadone has not been established.

†Injection formulation only. Use of Relistor beyond 4 months in treatment of OIC in patients with advanced illness has not been studied.

‡Xifaxan has additional indications for treatment of traveler's diarrhea (TD) caused by noninvasive strains of *Escherichia coli* in adult and pediatric patients 12 years of age and older, and in reduction of risk of overt hepatic encephalopathy recurrence in adults. Do not use Xifaxan in patients with TD complicated by fever or blood in the stool or diarrhea due to pathogens other than *E. coli*.

§IBS-D is severe if it includes diarrhea and ≥ 1 of the following: frequent and severe abdominal pain/discomfort, frequent bowel urgency or fecal incontinence, disability or restriction of daily activities due to IBS.

- Lotronex was approved by the FDA in February of 2000 and was later withdrawn from the market due to numerous reports of serious and fatal gastrointestinal adverse events. Approval of a supplemental New Drug Application (sNDA) was accepted in July 2002 by the FDA to allow restricted marketing of Lotronex to treat only women with severe IBS-D. Physicians are required to complete training before prescribing Lotronex to ensure that the benefits and risks of the agent are considered before administering it to patients (Lotronex FDA press release 2016).

- Information on indications, mechanism of action, pharmacokinetics, and safety has been obtained from the prescribing information for the individual products, except where noted otherwise.

CLINICAL GUIDELINES

- Guidelines on management of constipation suggest increased fiber intake and osmotic laxatives. Stimulant laxatives are to be used as needed or as “rescue agents”. Lubiprostone and linaclotide can be considered when symptoms of constipation do not respond to laxatives (AGA 2013, Bharucha et al 2013, Lindberg et al 2010).

- For management of OIC, the AGA recommends laxatives as a first-line treatment (Crockett et al 2019). For patients with laxative refractory OIC, naldemedine or naloxegol are recommended over no treatment. Methylnaltrexone is suggested over no treatment, but authors note that evidence supporting the use of this agent for OIC is low and costs may be prohibitive. The AGA does not make any recommendations for the use of lubiprostone or prucalopride for OIC due to lack of evidence.

- The 2014 American College of Gastroenterology monograph on the management of IBS and CIC makes the following statements (reported with the strength of recommendation and quality of evidence, respectively) (Ford et al 2014). Of note, only statements pertaining to CIC are included as the monograph on IBS management was updated in 2018:
 - Linaclotide is effective in CIC (strong; high)
 - Lubiprostone is effective in the treatment of CIC (strong; high)
 - Prucalopride is more effective than placebo in improving symptoms of CIC (strong; moderate)

- The 2018 American College of Gastroenterology monograph on the management of IBS makes the following statements (reported with the strength of recommendation and quality of evidence, respectively) (Ford et al 2018):
SAFETY SUMMARY

Contraindications:
- Amitiza is contraindicated with known or suspected mechanical gastrointestinal obstruction.
- Lotronex has several contraindications, including history of chronic or severe constipation or sequelae from constipation; intestinal obstruction, stricture, toxic megacolon, gastrointestinal perforation, and/or adhesions; ischemic colitis; impaired intestinal circulation, thrombophlebitis, or hypercoagulable state; Crohn’s disease or ulcerative colitis; diverticulitis; severe hepatic impairment.
- Linzess and Trulance are contraindicated in patients age 6 years or younger and in patients with known or suspected mechanical gastrointestinal obstruction.
- Motegrity is contraindicated in patients with intestinal perforation or obstruction due to a structural or functional disorder of the gut wall, obstructive ileus, severe inflammatory conditions of the intestinal tract such as Crohn’s disease, ulcerative colitis, and toxic megacolon/megarectum; and when there is a known serious or severe hypersensitivity reaction to the drug or any of its excipients.
- Movantik is contraindicated in patients with known or suspected gastrointestinal obstruction and at increased risk of recurrent obstruction, in patients with concomitant use of strong cytochrome (CYP) 3A4 inhibitors (eg, clarithromycin, ketoconazole), and when there is a known serious or severe hypersensitivity reaction to the drug or any of its excipients.
- Relistor is contraindicated in patients with known or suspected mechanical gastrointestinal obstruction and at increased risk of recurrent obstruction.
- Symproic is contraindicated in patients with known or suspected gastrointestinal obstruction or at increased risk of recurrent obstruction, and when there is a known serious or severe hypersensitivity reaction to the drug or any of its excipients.
- Viberzi has several contraindications, including use in patients with the following conditions: known or suspected biliary duct obstruction or sphincter of Oddi disease or dysfunction; alcoholism, alcohol abuse, alcohol addiction, or more than three alcoholic beverages daily; history of pancreatitis or structural diseases of the pancreas including known or suspected pancreatic duct obstruction; severe hepatic impairment; history of severe constipation or sequelae from constipation; known or suspected mechanical gastrointestinal obstruction; use in patients without a gallbladder; or known hypersensitivity to the drug.

- On March 15, 2017, the FDA warned that Viberzi should not be used in patients who do not have a gallbladder. The safety announcement was based on an FDA review that found these patients have an increased risk of developing serious pancreatitis that could result in hospitalization or death (FDA Drug Safety Communication 2017).
contraindication was added to the prescribing label for patients without a gallbladder due to an increased risk of developing serious pancreatitis. Pancreatitis was reported in patients taking either the 75 mg or 100 mg dose with most of the cases of serious pancreatitis occurring within a week of starting treatment.

- Xifaxan is contraindicated in patients with a hypersensitivity to rifaximin, any of the rifamycin antimicrobial agents, or any of the components in Xifaxan.

- **Boxed Warnings:**
 - Linzess and Trulance are contraindicated in pediatric patients 6 years of age and younger due to the risk of serious dehydration; should be avoided in children 6 to 17 years of age.
 - Lotronex has a Boxed Warning regarding serious gastrointestinal adverse reactions such as ischemic colitis and serious complications of constipation that may lead to hospitalization, blood transfusion, surgery, and/or death. If patients develop constipation or ischemic colitis, Lotronex should be discontinued. Lotronex should be used only in female patients with severe IBS-D who have not benefited from usual therapies.

- **Warnings/precautions:**
 - Amitiza: nausea (29% incidence in CIC), diarrhea (12% in CIC), syncope and hypotension, dyspnea, and bowel obstruction
 - Motegrity: Worsening of depression and emergence of suicidal thoughts and behavior may occur during therapy with Motegrity. Patients should stop Motegrity and contact their provider if these situations occur.
 - Viberzi: Constipation, sometimes requiring hospitalization, has been reported following administration of Viberzi. Patients who develop severe constipation should discontinue treatment and contact their health care provider immediately.

- **Risk Evaluation and Mitigation Strategy (REMS):**
 - Lotronex has REMS that distributes education to providers about the risks for ischemic colitis and serious complications of constipation (FDA REMS program 2019).
 - Lubiprostone has warnings and precautions for nausea (with 29% incidence in CIC), diarrhea (12% in CIC), syncope and hypotension, dyspnea, and bowel obstruction
 - Amitiza: Diphenylheptane opioids such as methadone may interfere with the efficacy of Amitiza.
 - Lotronox: Clinically significant drug interactions associated with Lotronox include CYP1A2 moderate inhibitors, CYP3A4 inhibitors, drugs that decrease gastrointestinal motility, and fluvoxamine. Concomitant use of Lotronox and fluvoxamine is contraindicated.
 - Motegrity: Concomitant administration of Motegrity and erythromycin may increase erythromycin concentrations via an unknown mechanism. Concomitant administration of Motegrity and ketoconazole may increase the Motegrity concentrations.
 - Movantik: Concomitant use of Movantik should be avoided with the following drug classes: moderate CYP3A4 inhibitors (eg, diltiazem, erythromycin, verapamil), due to increased naloxegol concentrations, strong CYP3A4 inducers (eg, rifampin) due to decreased naloxegol concentrations, and other opioid antagonists due to potentially additive effects that may increase risk of opioid withdrawal. In the event concomitant use with moderate CYP3A4 inhibitors is unavoidable, a dose reduction of Movantik is warranted.
 - Relistor: Concomitant use of Relistor with other opioid antagonists should be avoided due to potentially additive effects that may increase risk of opioid withdrawal.
 - Symproic: Concomitant use of Symproic should be avoided with strong CYP3A inducers (eg, rifampin, carbamazepine, phenytoin, St. John’s Wort) due to a significant decrease in nalemedine concentrations, and other opioid antagonists due to potentially additive effect of opioid receptor antagonism that may increase the risk of opioid withdrawal. Moderate CYP3A inhibitors (eg, fluconazole, atazanavir, aprepitant, diltiazem, erythromycin), strong CYP3A inhibitors (eg, itraconazole, ketoconazole, clarithromycin, rifatnavir, saquinavir), and P-glycoprotein inhibitors (eg, amiodarone, captopril, cyclosporine, quinidine, verapamil) can increase Symproic concentrations.
 - Viberzi: Drug interactions with Viberzi which potentially may result in clinically relevant effects include the following drug classes: organic anion transporting polypeptide (OATP) 1B1 inhibitors (eg, cyclosporine, gemfibrozil, antiretrovirals, rifampin, eltro姆bopag, etc.), strong CYP inhibitors (eg, ciprofloxacin, fluconazole, clarithromycin, paroxetine, bupropion), constipation-inducing drugs (eg, alosetron, anticholinergics, opioids), OATP1B1 and breast cancer resistance protein (BCRP) substrates (eg, rosuvastatin), and CYP3A substrates (eg, alfentanil, dihydroergotamine, ergotamine, fentanyl, pimozide, quinidine, sirolimus, tacrolimus).
 - Xifaxin: Concomitant administration of drugs that are P-glycoprotein inhibitors with Xifaxan can substantially increase systemic exposure to rifaximin. Caution should be exercised when concomitant use of Xifaxan and a P-glycoprotein inhibitor such as cyclosporin is needed.

- **Adverse events:**
The IBS and constipation agents are most commonly associated with gastrointestinal-related adverse events.

DOSING AND ADMINISTRATION

Table 4. Dosing and Administration

<table>
<thead>
<tr>
<th>Drug</th>
<th>Available Formulations</th>
<th>Route</th>
<th>Usual Recommended Frequency</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitiza (lubiprostone)</td>
<td>Capsules</td>
<td>Oral</td>
<td>Treatment of CIC in adults and OIC: twice daily</td>
<td>• Safety and efficacy have not been established in pediatric patients.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment of IBS-C in women ≥ 18 years of age; twice daily</td>
<td>• Dose should be adjusted in moderate and severe hepatic impairment.</td>
</tr>
<tr>
<td>Linzess (linaclotide)</td>
<td>Capsules</td>
<td>Oral</td>
<td>IBS-C: once daily</td>
<td>• Safety and efficacy have not been established in pediatric patients.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIC: once daily</td>
<td>• Capsule contents may be administered with applesauce or water if a patient is unable to swallow.</td>
</tr>
<tr>
<td>Lotronex (alosetron)</td>
<td>Tablets</td>
<td>Oral</td>
<td>Women with severe IBS-D: twice daily</td>
<td>• Pregnancy category B*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Safety and efficacy have not been established in pediatric patients.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Caution should be used in patients ≥ 65 years of age due to risk for constipation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Caution should be used in patients with mild or moderate impairment; use should be avoided in severe hepatic impairment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Treatment should be discontinued in patients who have not had adequate control of IBS symptoms after 4 weeks of treatment with 1 mg twice daily.</td>
</tr>
<tr>
<td>Motegrity (prucalopride)</td>
<td>Tablets</td>
<td>Oral</td>
<td>CIC in adults: once daily</td>
<td>• Safety and efficacy have not been established in pediatric patients.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Dose should be adjusted for severe renal impairment (creatinine clearance [CrCl] < 30 mL/min).</td>
</tr>
<tr>
<td>Movantik (naloxegol)</td>
<td>Tablets</td>
<td>Oral</td>
<td>OIC in chronic non-cancer pain: once daily</td>
<td>• Safety and efficacy have not been established in pediatric patients.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Tablet may be crushed for patients who are unable to swallow the tablet whole; crushed tablets may also be administered via a nasogastric tube.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Use should be avoided in patients with severe hepatic impairment (Child-Pugh Class C).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Dose should be adjusted for renal impairment (CrCl < 60 mL/min).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Maintenance laxative therapy should be discontinued prior to initiating therapy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Movantik should be discontinued when opioid pain medication is discontinued.</td>
</tr>
<tr>
<td>Drug</td>
<td>Available Formulations</td>
<td>Route</td>
<td>Usual Recommended Frequency</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Relistor (methylnaltrexone) | Single-use vials, single-use pre-filled syringes, tablets | Oral, SC injection | OIC in chronic non-cancer pain: SC injection once daily, or oral tablet(s) once daily in the morning
OIC in advanced illness: Weight-based SC injection once every other day, as needed (maximum of once daily) | • Safety and efficacy have not been established in pediatric patients.
• SC injection should be administered in the upper arm, abdomen, or thigh; injection sites should be rotated.
• Oral dose should be adjusted in moderate and severe hepatic impairment; adjustment of SC injection dose should be considered in severe hepatic impairment.
• Dose should be adjusted in moderate to severe renal impairment.
• Maintenance laxative therapy should be discontinued prior to initiating therapy.
• Relistor should be discontinued when opioid pain medication is discontinued. |
| Symproic (naldemedine) | Tablets | Oral | OIC in chronic non-cancer pain: once daily | • Safety and efficacy have not been established in pediatric patients.
• Use should be avoided in patients with severe hepatic impairment (Child-Pugh Class C).
• Symproic should be discontinued when opioid pain medication is discontinued. |
| Trulance (plecanatide) | Tablets | Oral | CIC and IBS-C: once daily | • Tablet may be crushed for patients who are unable to swallow the tablet whole; crushed tablets may also be administered via a nasogastric tube. |
| Viberzi (eluxadoline) | Tablets | Oral | Treatment of IBS-D in adults: twice daily | • Safety and efficacy have not been established in pediatric patients.
• Dose should be adjusted in patients who are unable to tolerate the 100 mg dose, are receiving concomitant OATP1B1 inhibitors, or have mild or moderate hepatic impairment.
• Use should be avoided in patients with severe hepatic impairment (Child-Pugh Class C). |
| Xifaxan (rifaximin) | Tablets | Oral | IBS-D: three times daily for 14 days
TD: three times daily for three days
Hepatic encephalopathy: twice daily | • Safety and efficacy have not been established in pediatric patients < 12 years of age with TD or patients < 18 years of age for hepatic encephalopathy and IBS-D.
• Patients with IBS-D who experience recurrence may be retreated up to 2 times with the same regimen.
• Should not be used in patients with TD complicated by fever or blood in the stool or diarrhea due to pathogens other than *E. coli*. |
See the current prescribing information for full details.

CONCLUSION

- There are currently no head-to-head trials comparing the available agents used in the treatment of CIC, OIC, IBS-C, and IBS-D.
- IBS is a gastrointestinal disorder with symptoms of abdominal pain, discomfort and bloating, and abnormal bowel habits with bouts of diarrhea and/or constipation (Andresen et al 2008, Ford et al 2018, Quigley et al 2012, WGO 2015). IBS has 4 subtypes depending on the change in bowel habits: IBS-D, IBS-C, IBS-M, or IBS-U.
 - Most patients with mild disease are managed with disease state education and support, coupled with lifestyle modifications, including diet changes and stress reduction and, when possible, symptom control (Andresen et al 2008, Ford et al 2009).
 - The intestinal secretagogues Linzess (linaclootide), Amitiza (lubiprostone), and Trulance (plecanatide) are indicated for the treatment of IBS-C. Amitiza is a selective chloride channel activator and Linzess and Trulance are guanylate cyclase-C agonists.
 - Lotronex (alostron), Viberzi (eluxadoline) and Xifaxan (rifaximin) are indicated for the treatment of IBS-D.
 - Viberzi is a mu-opioid receptor agonist and a schedule IV controlled substance.
 - Xifaxan is a rifamycin antibacterial. Patients with IBS-D who experience recurrence with Xifaxan treatment may be retreated up to 2 times with the same regimen.
 - Lotronex is limited to use in females with chronic, severe IBS-D who have not responded to conventional therapy. Due to serious safety concerns, Lotronex has a boxed warning regarding risk of gastrointestinal adverse events including ischemic colitis, and also has a REMS program.
- The 2018 American College of Gastroenterology monograph on the management of IBS strongly recommends that Linzess and Amitiza are superior to placebo for the treatment of IBS-C, and Trulance is effective in IBS-C; they weakly recommend that Xifaxan is effective in reducing IBS symptoms and bloating in IBS-D, Lotronex is effective in females with IBS-D, and Viberzi is superior to placebo in IBS-D (Ford et al 2018).
- The 2014 American College of Gastroenterology monograph on the management of CIC and IBS notes that linaclotide and lubiprostone are each effective for the treatment of CIC, and prucalopride is more effective than placebo in improving symptoms of CIC (Ford et al 2014).
 - Additional guidelines on management of constipation suggest increased fiber intake and osmotic laxatives (AGA 2013, Bharucha et al 2013, Lindberg et al 2010). Stimulant laxatives are to be used as needed or as “rescue agents.” Amitiza and Linzess can be considered when symptoms of constipation do not respond to laxatives.
 - Amitiza, Linzess, Motegrity (prucalopride), and Trulance are indicated for the treatment of CIC.
 - Motegrity is a selective 5-HT4 receptor agonist that stimulates colonic peristalsis. Amitiza, Linzess, and Trulance are intestinal secretagogues and there is no reported evidence indicating that these agents induce peristalsis.
 - For management of OIC, the AGA recommends laxatives as a first-line treatment (Crockett et al 2019). For patients with laxative refractory OIC, Symproic (naldemedine) or Movantik (naloxegol) are recommended over no treatment. Relistor (methylnaltrexone) is suggested over no treatment, but authors note that evidence supporting the use of this agent for OIC is low. The AGA does not make any recommendations for the use of Amitiza or Motegrity for OIC due to lack of evidence.
 - Amitiza, Movantik, Relistor, and Symproic are approved for treatment of OIC in patients with chronic non-cancer pain, and in those chronic pain related to prior cancer or its treatment in those who do not require frequent (eg, weekly) opioid dosage escalation. Relistor injection is also approved in patients with advanced illness or pain caused by active cancer who require opioid dosage escalation for palliative care.
 - Movantik, Relistor, and Symproic are PAMORAs.

REFERENCES

This information is considered confidential and proprietary to OptumRx. It is intended for internal use only and should be disseminated only to authorized recipients. The contents of the therapeutic class overviews on this website (“Content”) are for informational purposes only. The Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Patients should always seek the advice of a physician or other qualified health provider with any questions regarding a medical condition. Clinicians should refer to the full prescribing information and published resources when making medical decisions.

Movantik [package insert], Wilmington, DE: AstraZeneca Pharmaceuticals; February 2018.

Data as of March 8, 2019 KS-U/MG-U/ALS Page 15 of 16

This information is considered confidential and proprietary to OptumRx. It is intended for internal use only and should be disseminated only to authorized recipients. The contents of the therapeutic class overview on this website ("Content") are for informational purposes only. The Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Patients should always seek the advice of a physician or other qualified health provider with any questions regarding a medical condition. Clinicians should refer to the full prescribing information and published resources when making medical decisions.

Publication Date: March 11, 2019