Platelet Aggregation Inhibitors Review

FDA-Approved Indications

<table>
<thead>
<tr>
<th>Drug</th>
<th>Manufacturer</th>
<th>FDA-Approved Indication(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspirin/</td>
<td>Boehringer-Ingelheim</td>
<td>- Risk reduction of stroke in patients who have had transient ischemia of the brain or</td>
</tr>
<tr>
<td>dipyridamole ER</td>
<td></td>
<td>completed ischemic thrombotic stroke due to thrombosis</td>
</tr>
<tr>
<td>(Aggrenox®)1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clopidogrel</td>
<td>Bristol-Myers Squibb</td>
<td>- Secondary prevention of atherosclerotic events (fatal or nonfatal myocardial infarction</td>
</tr>
<tr>
<td>(Plavix®)2</td>
<td></td>
<td>(MI), fatal or nonfatal ischemic stroke, and vascular death) in patients with recent MI,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>recent stroke or established peripheral arterial disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Acute coronary syndrome:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Non-Q-wave acute MI or unstable angina during medical management or percutaneous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>intervention (with or without stenting) or coronary artery bypass graft (CABG) to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>decrease the rate of a combined endpoint of cardiovascular death, MI, or stroke as</td>
</tr>
<tr>
<td></td>
<td></td>
<td>well as the rate of a combined endpoint of cardiovascular death, MI, stroke, or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>refractory ischemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For ST-segment elevation acute MI to reduce the rate of death from any cause and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the rate of a combined endpoint of death, re-infarction, or stroke; this benefit is</td>
</tr>
<tr>
<td>dipyridamole</td>
<td>generic</td>
<td>not known to pertain to patients who receive primary angioplasty</td>
</tr>
<tr>
<td>(Persantine®)3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prasugrel</td>
<td>Eli Lilly</td>
<td>- Reduction of thrombotic CV events (including stent thrombosis) in patients with acute</td>
</tr>
<tr>
<td>(Effient™)4</td>
<td></td>
<td>coronary syndrome (ACS) who are to be managed with percutaneous coronary intervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(PCI) as follows: patients with unstable angina or non-ST-elevation myocardial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>infarction (NSTEMI), or patients with ST-elevation myocardial infarction (STEMI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>when managed with either primary or delayed PCI.</td>
</tr>
<tr>
<td>ticlopidine5</td>
<td>generic</td>
<td>- Secondary prevention of thrombotic stroke (fatal or nonfatal); second-line therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Adjunct to aspirin to reduce the incidence of subacute stent thrombosis for patients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>undergoing coronary stent placement</td>
</tr>
</tbody>
</table>

Aspirin is available over the counter and is indicated for primary and secondary prevention of MI, stable and unstable angina including coronary artery disease (CAD), arterial thromboembolism prophylaxis for patients with prosthetic heart valves in combination with warfarin, secondary prevention of stroke/transient ischemic attack (TIA), and acute treatment of stroke in patients not eligible for thrombolysis.
Overview

The 2010 Heart Disease and Stroke Statistics update cites cardiovascular (CV) disease as the cause of 34.3 percent of all deaths in the United States in 2006. Stroke causes significant morbidity and mortality in the United States. Stroke is the third leading cause of death in women age 65 and older, behind heart disease and cancer, and is the fourth leading cause of death in older men, behind heart disease, cancer, and chronic lower respiratory disease.

Inhibitory effects on the aggregation of platelets have led to a significant decrease in the rate of vascular events for both primary and secondary CV prevention trials. Aspirin has been shown to reduce CV morbidity and mortality in both primary and secondary prevention trials. For secondary prevention of CAD, as well as in patients who have had MI, ACS, or PCI, indefinite aspirin 75 mg to 100 mg daily is recommended (Grade 1A) by the 2008 American College of Chest Physicians (ACCP) evidence-based practice guidelines. For primary prevention in patients with moderate risk for a coronary event, aspirin 75 mg to 100 mg daily is recommended, over the use of antithrombotic therapy or a vitamin K antagonist (Grade 1A).

Aspirin failure is most commonly described in situations when aspirin has failed to prevent a thrombotic event. Aspirin failure may be due to the inability of aspirin to produce the desired pharmacological effect or may be related to poor adherence. The definition of aspirin resistance is quite variable in the literature and has been described as the failure to prevent a thrombotic event, the inability of aspirin to inhibit platelet thromboxane formation, or the inability of the drug to cause prolongation of bleeding time. A lack of any effect on in vivo tests of platelet activity, including no prolongation of the bleeding time, may also be defined as aspirin resistance. Several different methods to assess platelet aggregation and aspirin resistance have been described. Some of the testing methods identify those patients that are aspirin nonresponders, but the relationship to clinical events has not been fully evaluated.

Studies have identified that inter-patient variability of response to the antiplatelet agents does exist. A small percentage of patients with cardiovascular disease have aspirin resistance and are at higher risk for cardiovascular events. Variability in responsiveness to clopidogrel (Plavix) has also been documented. Dual aspirin and clopidogrel non-responsiveness has also been documented and linked to patients at a very high risk of drug-eluting stent thrombosis or death. Inconsistencies in response to clopidogrel may be due to pre-existing variability in platelet response to adenosine diphosphate (ADP), genetic variability (polymorphisms in the hepatic enzymes involved in clopidogrel metabolism or within the platelet P2Y12 receptor), or drug interactions (e.g. proton pump inhibitors). There appears to be an association between a CYP2C19 variant and recurrent thrombotic coronary events in patients taking clopidogrel. Clopidogrel is converted to its active form by the CYP2C19 enzyme. Some patients are poor metabolizers of the drug and do not effectively convert clopidogrel to its active form. In these patients, clopidogrel has less effect on platelets, and therefore less ability to prevent heart attack, stroke, and cardiovascular death. The rate of poor metabolizers varies based on racial background. Published frequencies for poor CYP2C19 metabolizer genotypes are approximately two percent for whites, four percent for blacks and 14 percent for Chinese. Prasugrel (Effient), a new antiplatelet agent, is not significantly affected by genetic variations that reduce CYP2C19 enzymes, therefore, is not expected to be affected by pharmacogenomics. Unpredictability in response to thienopyridines has led to the development of point-of-care devices to assess ADP induced platelet aggregation. Currently recommendations are not in place regarding the use of these devices.

Recommendations to manage aspirin resistance are not currently available. At this time, much of the published literature with aspirin resistance is in small populations with study design flaws.
or incomplete data.39,40,41,42,43 Until good quality clinical trials are completed and management guidelines developed, it is unknown if aspirin resistance can be overcome by increasing the dose of aspirin or adding another agent.44,45 In addition, diagnostic testing using unvalidated methods are premature at this time.46,47

Other antithrombotic drugs have been developed to improve the platelet aggregation inhibition and to improve the safety profile of platelet aggregation inhibitor therapy. Clopidogrel (Plavix), aspirin/dipyridamole ER (Aggrenox), and ticlopidine are platelet aggregation inhibitors and are useful in the treatment and prevention of cardiovascular and cerebrovascular thrombotic events. Prasugrel (Effient) is the newest platelet aggregation inhibitor and has shown better efficacy compared to clopidogrel in preventing MI and stent thrombosis in ACS patients undergoing PCI.48 For the aspirin allergic patient, ticlopidine or clopidogrel are alternative therapies, however clopidogrel is preferred to ticlodipine since it is associated with less serious adverse events. While safety information is still limited with the use of prasugrel, it has been associated with significantly more major bleeding when compared to clopidogrel-treated patients.49

Prevention of Stroke and TIAS

Several scientific statements and guidelines have been published on the prevention and treatment of ischemic stroke.50,51,52 The 2008 ACCP evidence-based practice guidelines recommend early (within 48 hour of stroke onset) aspirin therapy (initial dose 150 mg to 325 mg) for acute ischemic stroke patients who are not receiving thrombolysis treatment (Grade 1A).53 For long-term stroke prevention in patients who have experienced a noncardioembolic stroke or transient ischemic attack (TIA), aspirin (50 mg to 100 mg daily), aspirin/dipyridamole ER (Aggrenox) (25 mg/200 mg twice daily), or clopidogrel (75 mg daily) are all acceptable options for initial therapy (Grade 1B). In these patients, aspirin/dipyridamole ER is recommended over aspirin (Grade 1A), clopidogrel suggested over aspirin (Grade 2B), and long-term use of the combination of aspirin and clopidogrel is not recommended (Grade 1B). For patients who are allergic to aspirin, clopidogrel may be used (Grade 1A). Recently in PRoFESS, a large secondary stoke prevention study, aspirin/dipyridamole ER (Aggrenox) did not meet its prespecified criteria for non-inferiority versus clopidogrel (Plavix).54 For patients with noncardioembolic stroke and TIAs, antiplatelet agents are recommended over oral anticoagulants (Grade 1A). In patients with atrial fibrillation who have suffered a recent stroke or TIA, long-term oral anticoagulation [target international normalized ratio (INR), 2.5; range: 2 to 3] is recommended (Grade 1A).

The American Heart Association/American Stroke Association (AHA/ASA) Stroke and TIA Guidelines published in 2008 state that aspirin 50 to 325 mg daily, aspirin/dipyridamole ER (Aggrenox), and clopidogrel (Plavix) all remain initial treatment options for the prevention of secondary noncardioembolic ischemic stroke and TIA. (Class I recommendation, Level of Evidence A)55 The combination of aspirin/dipyridamole ER is recommended over aspirin monotherapy (Class I recommendation, Level of Evidence B). Clopidogrel may be considered over aspirin monotherapy on the basis of direct-comparison trials (Class II recommendation, Level of Evidence B). In a patient unable to take aspirin who requires treatment for secondary prevention of stroke, clopidogrel is a reasonable option (Class II recommendation, Level of Evidence B). The addition of aspirin to clopidogrel increases the risk of hemorrhage, therefore combination therapy is not routinely recommended for ischemic stroke or TIA patients in the absence of a specific indication for use (e.g. ACS or coronary stent). There is little information regarding the treatment of patients who have an ischemic stroke while on aspirin.

The AHA/ASA 2007 guidelines for the Early Management of Ischemic Stroke recommend
aspirin (initial dose 325 mg daily) within 24 to 48 hours of stroke onset (Class I recommendation, Level of Evidence A). These guidelines do not recommend the administration of clopidogrel (Plavix) alone or in combination with aspirin for treatment of acute ischemic stroke (Class III, Level of Evidence C).

The 2009 US Preventative Services Task Force updated the recommendations for aspirin for the primary prevention of CV disease. Aspirin is recommended in men ages 45 to 79 years to prevent MIs. Aspirin is recommended in women ages 55 to 79 years to prevent ischemic stroke. There is not enough information regarding benefit versus risk to recommend aspirin in patients 80 years or older. The optimal aspirin dose is unknown, but a dose of approximately 75 mg/day seems as effective as higher doses which can increase GI bleeding.

Cardiac Uses

The 2007 American College of Cardiology/American Heart Association (ACC/AHA) guidelines for unstable angina (UA) and non-ST segment elevation myocardial infarction (NSTEMI) recommend the use of antiplatelet agents in all patients with UA/NSTEMI, in the absence of an absolute contraindication. Aspirin should be given upon presentation and given indefinitely. For patients intolerant of aspirin due to hypersensitivity or major GI disturbance, clopidogrel (Plavix) may be administered as a loading dose and then continued daily. For patients with NSTEMI in whom noninvasive treatment is selected, clopidogrel should be added to aspirin and inpatient anticoagulation. Aspirin and clopidogrel therapy should continue for at least one month and ideally up to one year. Adverse events, including serious hematologic effects, limit the use of ticlopidine.

According to the 2004 ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction antithrombin therapy and antiplatelet therapy should be administered to all patients with an acute coronary syndrome regardless of the presence or absence of ST-segment elevation. For patients with acute ST segment myocardial infarction (STEMI) these guidelines recommend aspirin 162 to 326 mg within the first 24 hours and thereafter, 75 to 162 mg daily indefinitely. A thienopyridine (clopidogrel (Plavix), ticlopidine) should be administered to patients who are unable to tolerate aspirin due to hypersensitivity or major GI intolerance. Clopidogrel is preferred over ticlopidine due to a more favorable side effect profile. The 2007 update to the 2004 ACC/AHA STEMI guidelines recommend clopidogrel 75 mg and aspirin in STEMI patients regardless of whether they undergo reperfusion with fibrinolytic therapy or do not receive reperfusion therapy (Class I, Level A). Treatment with clopidogrel should continue for at least 14 days (Class I, Level B). It is reasonable to administer a 300 mg clopidogrel loading dose in patients less than 75 years old who receive fibrinolytic therapy or who do not receive reperfusion therapy. Although there are no data available from clinical trials regarding long-term clopidogrel therapy in STEMI patients, as a result of experience with UA/NSTEMI and coronary transplant patients, long-term maintenance therapy (e.g. one year) with clopidogrel 75 mg daily is reasonable in STEMI patients (Class IIa, Level C).

The 2008 ACCP evidence-based practice guidelines recommend both aspirin and clopidogrel for patients with acute STEMI regardless of whether they receive fibrinolytic therapy. Aspirin (75 mg to 162 mg daily) is recommended indefinitely and clopidogrel (300mg loading dose for those ≤ 75 years old) 75 mg daily up to 28 days in patients who received fibrinolytic therapy or no reperfusion therapy (Grade 1A) and up to one year in acute STEMI patients without coronary stents (Grade 2B). For patients undergoing primary percutaneous coronary intervention (PCI) with or without stenting, the guidelines suggest clopidogrel in addition to aspirin with a recommended initial dosing of at least 300 mg followed by 75 mg daily (Grade 1B).
The combination of clopidogrel 75 mg daily and indefinite aspirin 75 mg to 100 mg daily is recommended for patients experiencing ST-segment elevation (STE) and NSTE ACS (Grade 1A) according to ACCP. In the STE ACS population, clopidogrel is recommended for a duration of two to four weeks with the suggestion of continuing up to 12 months post hospital discharge. In the NSTE ACS patient population, clopidogrel is recommended for 12 months. Clopidogrel, as monotherapy, is recommended for patients with contraindications to aspirin (Grade 1A).

Both clopidogrel (Plavix) and ticlopidine, with the addition of aspirin, are efficacious in reducing major cardiac adverse events following successful coronary stent implantation. Clopidogrel may be better tolerated than ticlopidine and have a faster onset of action. However, serious hematologic adverse effects limit the use of ticlopidine. After the placement of a drug-eluting or bare-metal stent, the 2009 ACC/AHA Focused Update to the STEMI and PCI Guidelines recommend dual antiplatelet therapy with aspirin indefinitely and a thienopyridine (clopidogrel or prasugrel) for at least 12 months (Level of Evidence B) and for up to 15 months unless the risk of morbidity due to bleeding outweighs the benefit of thienopyridine therapy. In STEMI patients with a prior history of stroke and transient ischemic attack for whom primary PCI is planned, prasugrel is not recommended as part of a dual-antiplatelet therapy regimen (Level of Evidence: C). Early discontinuation of dual antiplatelet therapy greatly increases the risk of stent thrombosis, MI, and death. The 2007 ACC/AHA guidelines recommend and the PCI-CLARITY study supports clopidogrel pre-treatment and long-term therapy following PCI. Poor adherence to clopidogrel in post-drug-eluting stent patients within the first 30 days of therapy has been shown to reduce the beneficial effects on mortality. The 2008 ACCP evidence-based clinical practice guidelines recommend the combination of aspirin and clopidogrel for at least 12 months in patients who undergo bare metal stent or drug-eluting stent placement (Grade 1A). In patients with drug-eluting stents who do not have bleeding or tolerability issues, the indefinite combination of aspirin and clopidogrel is suggested (Grade 2C).

In September 2009, UK’s National Institute for Health and Clinical Excellence (NICE) issued guidance on the use of prasugrel. NICE recommends prasugrel in combination with aspirin as an option for preventing atherothrombotic events in people with ACS having PCI only in the following three subgroups: immediate primary PCI for STEMI is necessary, stent thrombosis has occurred during clopidogrel treatment, and in diabetic patients. NICE further states that patients currently on prasugrel for treatment of ACS whose circumstances do not meet these three criteria should have the option to continue therapy until it is appropriate to stop.

Use in Peripheral Arterial Disease (PAD)

For the treatment of peripheral arterial disease (PAD), the 2005 ACC/AHA guidelines state that aspirin is preferred over clopidogrel (Plavix) to reduce the risk of MI, stroke, and vascular death in patients with PAD. Currently, there are no data to support the use of the combination of clopidogrel and aspirin in patients with severe lower limb PAD.

Other Uses

Per the 2008 ACCP evidence-based clinical practice guidelines anticoagulation recommendations, for the management of rheumatic mitral valve disease and atrial fibrillation or previous systemic embolism, warfarin with a target INR of 2.5 (INR range: 2 to 3) is recommended. For patients with rheumatic mitral valve disease and atrial fibrillation who have a systemic embolism while on warfarin with a therapeutic INR, warfarin and aspirin 50 mg to 100 mg daily should be administered, after consideration of the additional hemorrhagic risks. An alternative strategy might be the adjustment of warfarin dosing to achieve a higher target INR.
(target INR, 3; range: 2.5 to 3.5). These guidelines state that until there are further clinical studies supporting the use of dipyridamole in the setting of valvular heart disease, its role will remain unclear and data are insufficient to recommend dipyridamole in combination with warfarin. The 2007 ACC/AHA STEMI guidelines recommend a target INR of 2 to 2.5 in patients requiring warfarin and clopidogrel and aspirin in patients have experienced STEMI with a stent placement. In this case, low dose (75 mg to 81 mg) aspirin and clopidogrel 75 mg daily are recommended as there is an increased risk of bleeding. Both the ACCP and the ACC/AHA NSTEMI guidelines recommend low dose aspirin with warfarin in patients with an indication for warfarin therapy (e.g. atrial fibrillation).

The 2008 American College of Cardiology Foundation (ACCF)/American College of Gastroenterology (ACG), and AHA have released an expert consensus document regarding gastrointestinal (GI) risk of antiplatelet and nonsteroidal inflammatory (NSAID) agents. The guidelines highlight the increased risk of upper-GI events with aspirin dose escalation, therefore they recommend against routine use of doses greater than 81 mg daily for chronic therapy. The combination of aspirin and warfarin should only be used in patients with an established indication. The guidelines state that clopidogrel (Plavix) should not be substituted for aspirin as a strategy to reduce GI ulcer bleeding, and the combination of warfarin and clopidogrel should only be considered when the benefits outweigh the risks. Gastroprotection with proton pump inhibitors (PPIs) is recommended for both the prevention and treatment of aspirin and NSAID-associated GI injury. These 2008 guidelines recognize in vitro data suggesting a drug interaction between PPIs and clopidogrel due to metabolism by the cytochrome P450 pathway. They find relatively little evidence of any clinically significant interaction between clopidogrel and PPIs.

In November 2009 the FDA provided an update to its January 2009 Early Communication about an Ongoing Safety Review for clopidogrel and its effectiveness when used in combination with PPIs. Several studies have reported increased risk of CV events including MI, and death or greater platelet reactivity associated with concurrent use of clopidogrel and a PPI. Other studies do not show increased CV events when clopidogrel and PPIs are used concomitantly. There are conflicting data regarding reduced antiplatelet activity when omeprazole, lansoprazole, or pantoprazole are given with clopidogrel. Study data from the manufacturer of Plavix (Sanofi-Aventis and Bristol-Myers Squibb) confirm that co-administration of omeprazole with clopidogrel results in decreased levels of clopidogrel's active metabolite by approximately 45 percent (through inhibition of the CYP 2C19 enzyme, the enzyme that forms the active metabolite), reducing clopidogrel's anti-clotting effect on platelets by as much as 47 percent. Currently, the FDA recommends: (1) Avoid using omeprazole and clopidogrel together and at any time of the day. Separating the dose of clopidogrel and omeprazole in time will not reduce this drug interaction. (2) Avoid using other potent CYP 2C19 inhibitors, including esomeprazole, with clopidogrel. (3) At this time, FDA does not have enough information about drug interactions between clopidogrel and PPIs other than omeprazole and esomeprazole to advise on their use together. (4) Patients who use clopidogrel and need a medication to reduce stomach acid can use antacids and most H2 blockers, except cimetidine which is a moderate CYP2C19 inhibitor. (5) Patients taking clopidogrel should consult with their healthcare provider if they are currently taking or considering taking omeprazole, including Prilosec OTC.

In May 2009, the Society for Cardiovascular Angiography and Interventions (SCAI) warned health care providers who are treating post-stent patients on dual antiplatelet therapy to consider alternative therapy with histamine-2 (H2) blockers or antacids instead of a PPI, when appropriate. This is in response to the high risk of CV adverse events and stroke in the Clopidogrel Medco Outcomes Study presented during the SCAI’s Annual Scientific
Sessions. Additional studies are needed to determine the degree to which individual PPIs may differ in their potential for interacting with clopidogrel before an official recommendation can be made about the use of dual antiplatelet therapy with PPIs in the setting of ACS.

Pharmacology

Aspirin inhibits platelet aggregation by irreversible inhibition of platelet cyclooxygenase and thus inhibits the generation of thromboxane A2, a powerful inducer of platelet aggregation and vasoconstriction.

Dipyridamole inhibits cyclic nucleotide phosphodiesterase which degrades cyclic-3',5'-adenosine monophosphate (cAMP) to 5'AMP; this results in intraplatelet accumulation of cAMP, a platelet inhibitor. Dipyridamole also blocks uptake of adenosine into platelets, endothelial cells and erythrocytes resulting in an increase in local concentrations of adenosine that acts on the platelet A2-receptor, thereby stimulating platelet adenylate cyclase and increasing platelet cAMP levels. Dipyridamole presumably inhibits adenosine deaminase as well as phosphodiesterase, allowing levels of cAMP to remain increased.

Aspirin/dipyridamole ER (Aggrenox) provides two mechanisms of anti-aggregation effects on platelets by administration of aspirin and dipyridamole together.

Clopidogrel (Plavix) is metabolized by CYP450 enzymes to its active metabolite that selectively inhibits the binding of adenosine diphosphate (ADP) to the platelet P2Y₁₂ receptor and the subsequent ADP-mediated activation of the glycoprotein IIb/IIIa complex, thereby inhibiting platelet aggregation. Clopidogrel irreversibly inhibits platelet aggregation.

Platelet aggregation is central in healing through the release of various platelet-derived growth factors that promote angiogenesis. Angiogenesis is critical for repair of GI mucosal disruptions. In addition, adenosine diphosphate-receptor antagonists impair the healing of gastric ulcers by inhibiting platelet release of pro-angiogenic growth factors, such as vascular endothelial growth factor, which promotes endothelial proliferation and accelerates the healing of ulcers. Clopidogrel impairs angiogenesis but this may not be a primary cause of gastroduodenal ulcers; the anti-angiogenic effects may impair healing of gastric erosions or small ulcerations that develop because of other medications or *Helicobacter pylori* infection. In presence of acid, this can lead to clinically significant ulceration and related complications. PPIs inhibit the parietal cell proton pump, thereby exerting a suppressive effect on gastric acid. Combining a PPI with clopidogrel appears to result in less GI bleeding. However, clopidogrel effectiveness can be decreased in the presence of PPIs.

Prasugrel (Effient) is a thienopyridine P2Y₁₂ platelet inhibitor. It is converted to an active metabolite primarily by CYP3A4 and CYP2B6. This prodrug inhibits platelet action by irreversibly binding to the platelet ADP receptor.

Ticlopidine interferes with platelet membrane function by inhibiting ADP-induced platelet-fibrinogen binding and subsequent platelet-platelet interactions. The effect on platelet function is irreversible for the life of the platelet.
Pharmacokinetics

<table>
<thead>
<tr>
<th>Drug</th>
<th>Half-Life (hr)</th>
<th>Metabolites</th>
<th>Excretion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspirin</td>
<td></td>
<td>metabolites</td>
<td>Renal: pH dependent</td>
</tr>
<tr>
<td>dipyridamole (Aggrenox)</td>
<td>0.33</td>
<td>monoglucuronide metabolite (low activity)</td>
<td>Feces: varies</td>
</tr>
<tr>
<td></td>
<td>13.6</td>
<td>monoglucuronide metabolite (low activity)</td>
<td>Renal: <5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>monoglucuronide metabolite (low activity)</td>
<td>Feces: 95</td>
</tr>
<tr>
<td>clopidogrel (Plavix)</td>
<td>6-parent drug</td>
<td>carboxylic acid derivative is inactive; parent is inactive</td>
<td>Renal: 50</td>
</tr>
<tr>
<td></td>
<td>8-inactive</td>
<td></td>
<td>Feces: 46</td>
</tr>
<tr>
<td></td>
<td>metabolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dipyridamole (Persantine)</td>
<td>10</td>
<td>inactive glucuronide metabolite</td>
<td>Predominately feces</td>
</tr>
<tr>
<td>prasugrel (Effient)</td>
<td>7 (2 to 15)-active metabolite</td>
<td>active and inactive metabolites</td>
<td>Renal: 68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feces: 27</td>
</tr>
<tr>
<td>ticlopidine</td>
<td>At steady state, 4-5 days</td>
<td>>20 inactive metabolites</td>
<td>Renal: 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feces: 23</td>
</tr>
</tbody>
</table>

nr = not reported

Aspirin/dipyridamole ER (Aggrenox): The pharmacokinetics of the individual agents are not affected by concurrent administration.

Clopidogrel active metabolite pharmacokinetics and antiplatelet effects, as measured by ex vivo platelet aggregation assays, differ according to CYP2C19 genotype. The prevalence of CYP2C19 alleles that result in intermediate and poor CYP2C19 metabolism differs according to race. The CYP2C19*2 and CYP2C19*3 alleles account for 85 percent of reduced function alleles in whites and 99 percent in Asians. The impact of CYP2C19 genotype on the pharmacokinetics of clopidogrel’s active metabolite has been evaluated in several studies. Reduced CYP2C19 metabolism in intermediate and poor metabolizers decreased the maximum concentration (Cmax) and exposure (area under the curve (AUC)) of the active metabolite by 30 to 50 percent following 300 or 600 mg loading doses and 75 mg maintenance doses. The association between CYP2C19 genotype and clopidogrel treatment outcome was evaluated in post-hoc analyses and several cohort studies. The results ranged from increased CV events in impaired metabolizers to no CV event rate difference in various genotypes.

Prasugrel (Effient) is not significantly affected by genetic variations that reduce CYP2C19 enzymes, therefore is not expected to be affected by pharmacogenomics.

Contraindications/Warnings

Clopidogrel (Plavix) is contraindicated in patients with active pathological bleeding such as bleeding peptic ulcer or intracranial hemorrhage as well as those patients with hypersensitivity to clopidogrel or any of the excipients.
Aspirin/dipyridamole ER (Aggrenox) is contraindicated in patients with hypersensitivity to dipyridamole, aspirin, or any excipients. Aspirin/dipyridamole ER should not be administered to patients with known allergy to NSAIDs or to patients with the syndrome of asthma, rhinitis, and nasal polyps. Aspirin/dipyridamole ER, due to the aspirin component, should not be given to children or teenagers with viral infections, with or without fever, because of the risk of Reye’s syndrome with concomitant use of aspirin in certain viral illnesses.

Prasugrel (Effient) is contraindicated in the presence of active pathological bleeding and in patients with prior transient ischemic attack or stroke. Other warnings include increased risk of bleeding (boxed warning), particularly coronary artery bypass graft (CABG) bleeding, and increased risk of stent thrombosis, myocardial infarction (MI), and death when prasugrel is discontinued prematurely. Prasugrel should not be started if CABG is anticipated, and it should be discontinued at least seven days prior to any surgery. Other bleeding risk factors include weight less than 60 kg, propensity to bleeding, or use of other medications that increase bleeding risk. Prasugrel is generally not recommended in patients who are ≥ 75 years old due to increased risk of fatal and intracranial bleeding and uncertain benefit except in high-risk patients who are ≥ 75 years (e.g. with prior MI, diabetes). Thrombotic thrombocytopenic purpura has been reported with the use of similar platelet aggregation inhibitors (e.g. ticlopidine, clopidogrel).

Ticlopidine is contraindicated in patients with a presence of neutropenia and thrombocytopenia, or a history of thrombotic thrombocytopenic purpura (TTP) or aplastic anemia. Ticlopidine should not be used in patients with a hemostatic disorder, active bleeding (including intracranial or peptic ulcer bleeding), or in patients with severe liver impairment.

Ticlopidine has a black box warning stating that ticlopidine has been associated with life-threatening hematologic adverse reactions, including neutropenia, agranulocytosis, TTP, and aplastic anemia. Periodic monitoring of complete blood count is recommended, especially during the first three months of therapy.

Clopidogrel (Plavix) has been rarely associated with TTP. Onset of TTP is generally within the first two weeks of therapy. Clopidogrel should be discontinued five days prior to surgery, if possible, to reduce the risk of bleeding. Very little experience with clopidogrel is available for use in patients with severe hepatic or renal impairment.

Aspirin/dipyridamole ER (Aggrenox) has several warnings in the package labeling. Patients who consume three or more alcoholic drinks every day should be counseled about the bleeding risks involved with chronic heavy alcohol use while taking aspirin. Due to the aspirin component, the increase in bleeding time may adversely affect patients with inherited or acquired (liver disease or vitamin K deficiency) bleeding disorders. Aspirin has known gastrointestinal (GI) adverse effects that include stomach pain, heartburn, nausea, vomiting, and GI bleeding. Although minor upper GI symptoms, such as dyspepsia, are common and can occur anytime during therapy, it is important to monitor for signs of ulceration and bleeding, even in the absence of previous GI symptoms. Patients with a history of active peptic ulcer disease should avoid using aspirin due to the potential for gastric mucosal irritation and bleeding.
Drug Interactions

<table>
<thead>
<tr>
<th>Drug</th>
<th>theophylline</th>
<th>warfarin</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspirin/</td>
<td>-</td>
<td>May be at higher risk for bleeding</td>
<td>Dipyridamole may increase the cardiovascular effects of adenosine</td>
</tr>
<tr>
<td>dipyridamole ER (Aggrenox)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clopidogrel (Plavix)</td>
<td>-</td>
<td>May be at higher risk for bleeding</td>
<td></td>
</tr>
<tr>
<td>dipyridamole (Persantine)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prasugrel (Effient)</td>
<td>-</td>
<td>May be at higher risk for bleeding</td>
<td></td>
</tr>
<tr>
<td>ticlopidine</td>
<td>Increased theophylline level</td>
<td>-</td>
<td>Monitor theophylline level</td>
</tr>
</tbody>
</table>

Clopidogrel is a prodrug which requires hepatic conversion via CYP2C19 to its active metabolite. Impaired clopidogrel conversion to its active metabolite may be due to either CYP450 polymorphisms or drug interactions (e.g. PPIs) resulting in suboptimal antiplatelet activity. PPIs are CYP2C19 isoenzymes substrates so it is possible that any PPI may decrease the conversion of clopidogrel to its active metabolite thereby reducing its effectiveness.

The clopidogrel prescribing information states that clopidogrel is converted to this active metabolite in part by CYP2C19. This metabolism can be impaired by genetic variations in CYP2C19 and by concomitant use of medications that interfere with CYP2C19. Avoid use of clopidogrel in patients with impaired CYP2C19 function due to known genetic variation. Avoid concomitant use of clopidogrel with drugs that inhibit CYP2C19 activity (e.g. omeprazole).

Prasugrel is a prodrug which requires hepatic conversion via CYP3A4 and CYP2B6 (with lesser involvement of CYP2C9 and CYP2C19) to its active metabolite. There are no significant drug interactions with CYP3A4 inhibitors (e.g. ketoconazole) and inducers (e.g. rifampin). Since prasugrel uses the CYP2C19 enzymes to a lesser extent for conversion to its active metabolite, it is also not significantly affected by the CYP2C19 inhibitors (e.g. omeprazole). Therefore, PPIs are not expected to interact with prasugrel.

Several studies have been performed to assess the effects of PPIs on platelet inhibition by clopidogrel. These studies are limited by study design flaws (e.g. retrospective, small post-hoc analyses, lack of blinding, in vitro). Large randomized trials are needed to evaluate the interaction and estimate its severity on clinical outcomes.

The OCLA study was a randomized, double-blind, placebo-controlled trial, which included 124 consecutive patients undergoing coronary artery stent implantation and receiving aspirin (75 mg/day) and clopidogrel (loading dose, followed by 75 mg/day). Patients were randomized to omeprazole (20 mg/day) or placebo for seven days. Clopidogrel effectiveness was tested on days one and seven in both groups by measuring platelet phosphorylated-VASP expressed as a
platelet reactivity index (PRI); the higher the PRI, the more frequently thrombosis occurs. The main end point compared PRI value at the seven-day treatment period in the two groups. On day one, mean PRI was 83.2 percent and 83.9 percent, respectively, in the placebo and omeprazole groups (p=NS). On day seven, mean PRI was 39.8 percent and 51.4 percent, in the placebo and omeprazole groups respectively (p<0.0001). This study did not exclude clopidogrel nonresponders, was ex vivo, and had a small sample size.

A retrospective cohort study of 8,205 patients with ACS taking clopidogrel after discharge from 127 Veterans Affairs hospitals between 2003 and 2006 included 63.9 percent who were prescribed a PPI at discharge, during follow-up, or both and 36.1 percent who were not prescribed a PPI.149 Death or rehospitalization for ACS occurred in 20.8 percent of patients taking clopidogrel without a PPI and 29.8 percent of patients taking clopidogrel plus a PPI. In multivariable analyses, use of clopidogrel plus a PPI was associated with an increased risk of death or rehospitalization for ACS compared with use of clopidogrel without a PPI (adjusted odds ratio [AOR], 1.25; 95% CI, 1.11-1.41). Among patients taking clopidogrel after hospital discharge and prescribed PPI at any point during follow-up (n=5,244), periods of use of clopidogrel plus a PPI (compared with periods of use of clopidogrel without a PPI) were associated with a higher risk of death or rehospitalization for ACS (adjusted hazard ratio, 1.27; 95% CI, 1.10-1.46). In analyses of secondary outcomes, patients taking clopidogrel plus a PPI had a higher risk of hospitalizations for recurrent ACS compared with patients taking clopidogrel without a PPI (14.6 percent versus 6.9 percent; AOR, 1.86 [95% CI, 1.57-2.2]) and revascularization procedures (15.5 percent versus 11.9 percent; AOR, 1.49 [95% CI, 1.3-1.71]), but not for all-cause mortality (19.9 percent versus 16.6 percent; AOR, 0.91 [95% CI, 0.8-1.05]).

In May 2009, the preliminary results of the Clopidogrel Medco Outcomes Study were released. This is a retrospective cohort study of 16,690 patients taking clopidogrel for 12 months following coronary stenting.150,151 The study compares major adverse cardiovascular (CV) events among members in the pharmacy and medical claims database. One year risk of major CV events was significantly higher in PPI-treated patients (25.1 percent) compared to patients without PPIs (17.9 percent)(HR 1.51, 95% CI, 1.39-1.64, p<0.0001). The use of individual PPIs was associated with a significantly higher risk of major CV events compared to no PPI use, 25.1 (p<0.0001), 24.9 (p<0.0001), 29.2 (p<0.0001), and 24.3 percent (p<0.0004), for omeprazole, esomeprazole, pantoprazole, and lansoprazole, respectively. As a result of this study, the Society for Cardiovascular Angiography and Interventions (SCAI) released a statement regarding the use of clopidogrel and PPIs. They urge health care providers who are treating post-stenting patients on dual-antiplatelet therapy to consider prescribing a histaminergic (H2) blocker or antacids instead of a PPI considering the high risk for adverse events shown in this study.152

A post-hoc analysis of the TRITON-TIMI 38 and PRINCIPLE-TIMI 44 trials analyzed the pharmacodynamic effect and clinical efficacy of clopidogrel and prasugrel with or without a PPI.153,154 In TRITON-TIMI 38, a third of patients were on PPI therapy, but there was no association between PPI use and the primary endpoint of death, MI, or stroke with either clopidogrel (HR 0.94, 95% CI 0.8 to 1.11) or prasugrel (HR 1, 95% CI 0.84 to 1.2). There was no difference with different PPIs. There was also no effect on CV events by adding H\textsubscript{2} receptor antagonists to PPIs. In PRINCIPLE-TIMI 44, the mean inhibition of platelet aggregation was 23.2 and 35.2 percent for clopidogrel patients taking a PPI compared to those not taking a PPI, respectively (p=0.02). There was a non-significant inhibition of platelet aggregation with prasugrel (69.6 percent with PPIs versus 76.7 percent without PPIs).
COGENT was a randomized, double-blind, placebo-controlled, multicenter trial of patients with median follow-up of 133 days. Patients (n=3,627) with acute coronary syndromes receiving PCI were randomized to receive either a fixed dose of clopidogrel 75 mg along with omeprazole 20 mg (CGT-2168) or clopidogrel with placebo. All patients received enteric-coated aspirin at a dose of 75-325 mg daily. The trial was terminated early when the sponsor declared bankruptcy. The results were reported in September 2009 at the Transcatheter Cardiovascular Therapeutics (TCT) meeting. There was no difference in the incidence of the primary endpoint (composite of CV death, nonfatal MI, CABG, or PCI and ischemic stroke) between the clopidogrel/omeprazole and clopidogrel arms (3.8 percent versus 3.7 percent, HR 1.02, 95% CI, 0.7-1.51). Similarly, there was no difference between the two arms in the incidence of MI (HR 0.96, 95% CI, 0.59-1.56), or revascularization (HR 0.95, 95% CI, 0.59-1.55). However, the incidence of composite GI events was significantly lower in the combination arm (two percent versus 3.5 percent, HR 0.55, 95% CI, 0.36-0.85, p=0.007). The fixed dose combination of clopidogrel and omeprazole used in this study is not available in the US.
Adverse Effects

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dyspepsia</th>
<th>Nausea</th>
<th>Rash</th>
<th>Dizziness</th>
<th>Headache</th>
<th>Diarrhea</th>
<th>Discontinuation Rate</th>
<th>Hemorrhage</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspirin/dipyridamole ER (Aggrenox)</td>
<td>18.4</td>
<td>16</td>
<td>nr</td>
<td>nr</td>
<td>39.2</td>
<td>12.7</td>
<td>25</td>
<td>Not specified</td>
</tr>
<tr>
<td>aspirin 25mg twice daily</td>
<td>18.1</td>
<td>12.7</td>
<td>33.8</td>
<td>6.8</td>
<td>19</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>placebo</td>
<td>16.7</td>
<td>14.1</td>
<td>32.9</td>
<td>9.8</td>
<td>21</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clopidogrel (Plavix)</td>
<td>5.2</td>
<td>3.4</td>
<td>4.2</td>
<td>6.2</td>
<td>7.6</td>
<td>4.5</td>
<td>13</td>
<td>Gl</td>
</tr>
<tr>
<td>aspirin 325 mg daily</td>
<td>6.1</td>
<td>3.8</td>
<td>3.5</td>
<td>6.7</td>
<td>7.2</td>
<td>3.4</td>
<td>13</td>
<td>2.7</td>
</tr>
<tr>
<td>prasugrel (Effient) + aspirin</td>
<td>nr</td>
<td>4.6</td>
<td>2.8</td>
<td>4.1</td>
<td>5.5</td>
<td>2.3</td>
<td>7.2</td>
<td>Major bleeding</td>
</tr>
<tr>
<td>clopidogrel (Plavix) + aspirin</td>
<td>4.3</td>
<td>2.4</td>
<td>4.6</td>
<td>5.3</td>
<td>2.6</td>
<td>6.3</td>
<td>1.7 (p=0.029)</td>
<td>non-CABG related</td>
</tr>
<tr>
<td>dipyridamole</td>
<td>reported</td>
<td>reported</td>
<td>2.3</td>
<td>13.6</td>
<td>2.3</td>
<td>reported</td>
<td>nr</td>
<td>reported with concurrent warfarin</td>
</tr>
<tr>
<td>ticlopidine</td>
<td>7.0 (0.9)</td>
<td>7.0 (1.7)</td>
<td>5.1</td>
<td>1.1</td>
<td>reported</td>
<td>12.5</td>
<td>21</td>
<td>reported</td>
</tr>
<tr>
<td>n=1,650</td>
<td>n=1,654</td>
<td>n=1,649</td>
<td>n=1,649</td>
<td>ESPS2 data</td>
<td>n=9,599</td>
<td>n=9,586</td>
<td>CAPRIE data</td>
<td>n=6,741</td>
</tr>
</tbody>
</table>

Adverse effects are indicated as percentage occurrence. Adverse effects data are compiled from package inserts and cannot be considered comparative or all inclusive. Incidences for the placebo group are indicated in parentheses. nr = not reported.

A meta-analysis evaluated the risk of bleeding complications associated with antiplatelet agents in 51 randomized trials with 338,191 patients. Low-dose aspirin (less than 100 mg daily) and dipyridamole have the lowest risk of bleeding (3.6 and 6.7 percent, respectively). Aspirin doses exceeding 100 mg daily had a similar risk for bleeding as clopidogrel (Plavix) and ticlopidine.
A systematic review of 22 clinical trials evaluated the adverse events with aspirin (75 to 325 mg daily) and clopidogrel (Plavix) associated with therapy for primary or secondary prophylaxis for cardiovascular events. Aspirin was associated with an increased risk of major bleeding, major GI bleeding, and intracranial bleeding compared to placebo. The increased risk with low-dose aspirin was 1.7 to 2.1-fold; however, the absolute increased risk was only a 0.13 percent per year. A dose-related effect was not observed when dividing the aspirin doses into two groups of 75-162.5 mg daily doses versus 162.5 to 325 mg daily doses in the analysis, which conflicts with other available data. Of the studies included, clopidogrel was not compared to placebo. One study included in the analysis had increased major GI bleeding with aspirin 325 mg compared to clopidogrel (RR=1.45; 95% CI, 1-2.1) with an absolute increase in risk of 0.12 percent per year associated with aspirin use (95% CI, 0-0.28).

Special Populations

Pediatrics

Safety and effectiveness have not been established for clopidogrel (Plavix), prasugrel (Effient), ticlopidine, or aspirin/dipyridamole ER (Aggrenox) in pediatric patients. Safety and effectiveness of dipyridamole in patients below the age of 12 years have not been established. The use of aspirin in children should be avoided due to the risk of Reye’s syndrome with aspirin usage in certain viral illnesses.

The 2008 ACCP evidence-based clinical guidelines state that aspirin remains the most common antiplatelet agent used in pediatrics. The dose of aspirin for optimal inhibition of platelet aggregation is not known, although empiric low doses of 1 to 5 mg/kg/day have been proposed. Dipyridamole has also been used in pediatrics.

Pregnancy

Clopidogrel (Plavix), prasugrel (Effient), and ticlopidine are Pregnancy Category B. Aspirin should not be used within one week preceding or during labor and delivery, as the risk of hemorrhage is increased.

Aspirin/dipyridamole ER (Aggrenox) is classified as Pregnancy Category D. Aggrenox labeling states that aspirin may cause low birth weight, increased incidence for intracranial hemorrhage in premature infants, stillbirths, and neonatal death. Due to the risk of these harmful effects and because of the known effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on the fetal cardiovascular system (closure of the ductus arteriosus), aspirin/dipyridamole ER (Aggrenox) should be avoided in the third trimester of pregnancy.

Renal Impairment

Aspirin should be avoided in severe renal failure. No dosage adjustment is recommended for clopidogrel, dipyridamole, or prasugrel in renal impairment. Dose reduction or discontinuation of ticlopidine (if hemorrhagic or hematopoietic problems are encountered) may be required in renal impairment.

Hepatic Impairment

Aspirin should be avoided in severe hepatic insufficiency. No dosage adjustment is needed for clopidogrel in hepatic impairment. Elevations of hepatic enzymes and hepatic failure have been
reported with dipyridamole. No dosage adjustment is needed for mild to moderate hepatic impairment with prasugrel. While prasugrel has not been studied in severe hepatic impairment, these patients are generally at higher risk of bleeding. Since ticlopidine is metabolized by the liver, dose adjustment may be needed for ticlopidine or other drugs metabolized in the liver and may require adjustment upon starting or stopping concomitant therapy. Because of limited experience in patients with severe hepatic disease who may have bleeding diatheses, the use of ticlopidine is not recommended in this population.

Geriatrics

No dosage adjustment is recommended for elderly patients taking clopidogrel or dipyridamole. The risk of bleeding with use of prasugrel increases with advancing age. For patients 75 years of age and older, the use of prasugrel is not recommended, except in high-risk situations such as the presence of diabetes or past history of MI.

Clearance of ticlopidine decreases with age. Steady state trough values in elderly patients (mean age 70 years) are about twice those in younger volunteer populations. No overall differences in effectiveness or safety were observed between these patients and younger patients, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

Low body weight

Patients with body weight less than 60 kg are at increased risk of bleeding with prasugrel. A reduced dose of 5 mg daily should be considered for patients taking prasugrel.

Japanese

A randomized double-blind study of 1,151 Japanese patients with noncardioembolic cerebral infarction compared clopidogrel (Plavix) 75 mg to ticlodipine 200 mg once daily for 52 weeks. In these stroke patients, clopidogrel was associated with significantly fewer safety events compared to ticlodipine (7 percent versus 15.1 percent respectively, p<0.001) in the primary endpoint of safety. There was no significant difference in the major secondary endpoint of incidence of vascular events (HR 0.977, 95% CI, 0.488-1.957).
Dosages

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspirin 25 mg/ dipyridamole ER 200 mg (Aggrenox)</td>
<td>one capsule twice daily</td>
<td>25 mg/200 mg capsule Aggrenox is not interchangeable with the individual components of aspirin and dipyridamole tablets.</td>
</tr>
<tr>
<td></td>
<td>Alternative regimen for patients with intolerable headaches: during initial treatment, switch to one capsule at bedtime and low-dose aspirin in the morning. Because there are no outcomes data with this regimen and headaches become less of a problem as treatment continues, patients should return to the usual regimen (one capsule twice daily) as soon as possible, usually within one week.</td>
<td></td>
</tr>
<tr>
<td>clopidogrel (Plavix)</td>
<td>75 mg daily</td>
<td>75, 300 mg tablets</td>
</tr>
<tr>
<td></td>
<td>acute coronary syndrome: NSTEMI: 300 mg for one dose then 75 mg daily plus aspirin 75 to 325 mg daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STEMI: 75 mg daily in combination with aspirin</td>
<td></td>
</tr>
<tr>
<td>dipyridamole (Persantine)</td>
<td>75-100 mg four times daily with concurrent coumarin anticoagulants</td>
<td>25, 50, and 75 mg tablets</td>
</tr>
<tr>
<td>prasugrel (Effient)</td>
<td>60 mg for one dose then 10 mg daily plus aspirin 75 to 325 mg daily</td>
<td>5, 10 mg tablets</td>
</tr>
<tr>
<td>ticlopidine</td>
<td>250 mg twice daily</td>
<td>250 mg tablet</td>
</tr>
</tbody>
</table>

Pretreatment with clopidogrel (Plavix) therapy can reduce the risks associated with PCI. A loading dose of 600 mg instead of 300 mg has been studied in an effort to determine if this higher loading dose would shorten the time for clopidogrel to become effective and produce a greater antiplatelet effect, without an apparent adverse effect on safety. Current recommendations exist for a loading dose up to 600 mg of clopidogrel in ACS patients undergoing PCI. Recently studies have also investigated doubling the maintenance dose of clopidogrel from 75 mg to 150 mg for one to two weeks followed by 75 mg daily thereafter, with and without high (300 to 325 mg) or low dose (75 to 100 mg) aspirin daily. A loading dose of 300 mg and 600 mg was used in maintenance low dose and high dose groups, respectively. Use of the higher maintenance dose (150 mg) has shown a statistical significant
reduction in CV events in ACS patients who receive PCI compared to the standard maintenance (75 mg) group. Severe, but not fatal, bleeding was increased in the 150 mg dose group in one of the studies (HR 1.44, 95% CI, 1.11 to 1.86). High dose clopidogrel was not associated with higher major bleeding in the other study. CYP2C19 poor metabolizer status is associated with decreased response to clopidogrel. The optimal dose regimen for poor metabolizers has not been determined.

Clinical Trials

Search Strategy

Studies were identified through searches performed on PubMed and review of information sent by manufacturers. Search strategy included the FDA-approved use of all drugs in this class. Randomized, controlled trials comparing agents in ambulatory patients who are at high risk or have documented vascular disease due to thrombotic episodes are considered the most relevant in this category. Studies included also reflect the FDA-approved indications. Comparative trials are the most important, but when comparative trials are not available, placebo-controlled trials were considered relevant. Studies included for analysis in the review were published in English, performed with human participants and randomly allocated participants to comparison groups. In addition, studies must contain clearly stated, predetermined outcome measure(s) of known or probable clinical importance, use data analysis techniques consistent with the study question and include follow-up (endpoint assessment) of at least 80 percent of participants entering the investigation. Despite some inherent bias found in all studies including those sponsored and/or funded by pharmaceutical manufacturers, the studies in this therapeutic class review were determined to have results or conclusions that do not suggest systematic error in their experimental study design. While the potential influence of manufacturer sponsorship/funding must be considered, the studies in this review have also been evaluated for validity and importance.

aspirin

Aspirin has been extensively studied and found to prevent vascular events, both fatal and non-fatal, by 15 to 30 percent in many trials. The Physicians’ Health Study with 22,071 men (age >50 years without CAD) provided the first strong support for aspirin 325 mg daily in reducing the risk of a first MI; however, the relative risk reductions for stroke and mortality due to cardiovascular causes were less clear. Further study confirmed aspirin use also reduced mortality in patients at higher risk for cardiovascular disease.

The Women’s Health Study was a large randomized, double-blind, placebo-controlled trial of aspirin 100 mg daily in the primary prevention of cardiovascular disease among 39,876 healthy women, with a majority of women less than age 65 years. Patients were followed for a mean of ten years for the major cardiovascular events of MI, stroke, and death from cardiovascular causes. The risk of major cardiovascular events was slightly lower with aspirin; however, the risk reduction was not statistically significant (nine percent relative risk reduction, 0.91; 95% CI, 0.8 to 1.03; p=0.13). Aspirin reduced the relative risk of stroke by 17 percent (relative risk, 0.83; 9% CI, 0.69 to 0.99; p=0.04) but not of MI.

The findings from the large preventive trials - Physician’s Health Study in men and Women’s Health Study - differ. Aspirin doses and rate of MI are examples of the many differences between the two studies. Aspirin therapy was associated with a 32 percent reduction in MI but no significant effect on stroke in men.
The second European Stroke Prevention Study (ESPS-2) evaluated the effectiveness of dipyridamole ER plus low-dose aspirin in the secondary prevention of stroke versus monotherapy for two years.200 The double-blind study randomized 6,602 patients who had experienced a TIA or ischemic stroke within the previous three months to placebo, aspirin 25 mg twice daily, dipyridamole ER 200 mg twice daily, or the combination of aspirin 25 mg plus dipyridamole ER 200 mg twice daily. The primary endpoints were stroke, death or the combination. The aspirin/dipyridamole ER group showed a relative risk reduction for stroke of 37 percent versus placebo (p<0.001), 18 percent with ASA alone (p=0.013), and 16 percent with dipyridamole alone (p=0.039). The combination therapy had an absolute risk reduction of fatal and nonfatal stroke of three percent versus aspirin and dipyridamole monotherapy groups. Mortality rate was not significantly affected by any treatment. Beneficial effects of antiplatelet therapy were evident regardless of age.201 Aspirin was associated with significantly more overall and gastrointestinal bleeding compared to dipyridamole or placebo. One criticism of the ESPS-2 study was the inclusion of the placebo group.

In a randomized, placebo-controlled study of 149 patients from fibrinolytic trials who had a patent infarct-related artery three to four weeks after STEMI, quantitative coronary angiography of non-infarct arteries was performed on paired cine-angiograms at one year.202 Patients had been randomized to either continue the daily combination of 50 mg aspirin and 400 mg dipyridamole or to placebo. There were no significant differences in these groups in changes in minimal luminal diameter (MLD) (-0.02 mm; 95% CI, -0.09 to 0.05). Progression of CAD was seen in two thirds of patients and did not independently predict long-term death and/or reinfarction.

clopidogrel (Plavix) versus aspirin

In the CAPRIE study, clopidogrel 75 mg daily and aspirin 325 mg daily were compared for relative efficacy in reducing a composite outcome cluster of ischemic stroke, MI, or vascular death in a randomized, blinded trial.203 A total of 19,185 patients with a documented stroke, MI, or symptomatic peripheral arterial disease were enrolled in the trial and followed for one to three years. Significant findings include an 8.7 percent relative risk reduction of all endpoints (ischemic stroke, MI, or vascular death) with clopidogrel (5.32 percent annual risk) versus aspirin (5.83 percent annual risk) (95% Cl, 0.3-16.5; p=0.043). The absolute risk reduction of clopidogrel over aspirin was 0.5 percent for the combined endpoints. Hemorrhagic events were similar between the groups.204

clopidogrel (Plavix) versus aspirin plus esomeprazole (Nexium®)

Aspirin with esomeprazole and clopidogrel were compared for the prevention of recurrent GI bleeding in patients with a history of GI bleeding.205 Following ulcer healing and a negative \textit{H. pylori} test, patients were randomized to clopidogrel 75 mg daily (n=161) or aspirin 80 mg daily plus esomeprazole 20 mg twice daily (n=159). Patients were followed for 12 months for the recurrence of ulcer bleeding. Recurrent bleeding occurred in 13 clopidogrel-treated patients and one patient receiving aspirin plus esomeprazole. The cumulative incidence of recurrent ulcer bleeding was 8.6 percent (95% CI, 4.1 to 13.1 percent) and 0.7 percent (95% CI, 0 to 2 percent) for the clopidogrel and aspirin/esomeprazole groups, respectively (difference, 7.9 percent; 95% CI for the difference, 3.4 to 12.4; p=0.001).
In a double-blind, randomized trial, esomeprazole with aspirin was compared to clopidogrel in patients with a history of ulcer bleeding while on low-dose aspirin.206 Patients (n=170), after ulcer healing and eradication of \textit{H. pylori}, if necessary, were given esomeprazole 20 mg daily plus aspirin 100 mg daily or clopidogrel 75 mg daily for one year. Recurrent ulcer complications developed in nine patients (13.6 percent) in the clopidogrel group and none in the esomeprazole/aspirin group (95% CI, 6.3-20.9; p=0.00019).

clopidogrel (Plavix) plus aspirin

The CURE study evaluated the efficacy and safety of clopidogrel when given with aspirin in 12,562 acute coronary syndrome patients.207 Patients were randomized within 24 hours of onset of angina symptoms to clopidogrel 300 mg for one dose then 75 mg daily or placebo, in addition to aspirin (75 to 325 mg daily), for three to 12 months. The composite primary endpoint was cardiovascular death, nonfatal MI, or stroke, which occurred in 9.3 percent of the clopidogrel group and 11.4 percent in the placebo group (relative risk with clopidogrel as compared with placebo, 0.8; 95% CI, 0.72 to 0.9; p<0.001). Clopidogrel reduced the risk of the second primary endpoint defined as the composite of cardiovascular death, nonfatal MI, or stroke or the occurrence of refractory ischemia compared to the placebo group (16.5 percent clopidogrel group compared to 18.8 percent in the placebo group; relative risk, 0.86; 95% CI, 0.79 to 0.94; p<0.001). Rates of the individual outcome endpoints of cardiovascular death, stroke, and refractory ischemia showed numerical improvement with clopidogrel but did not achieve statistical significance. Significantly more major bleeding episodes were observed in the clopidogrel group (3.7 percent in the clopidogrel group versus 2.7 percent in the placebo group, relative risk 1.38; p=0.001). Hemorrhagic strokes and life-threatening bleeding episodes were similar in both groups. Higher doses of aspirin with or without clopidogrel were associated with a higher risk of major bleeding.208 Minor bleeding episodes were significantly higher in the clopidogrel group (5.1 percent versus 2.4 percent in the placebo group, p<0.001). Benefits of the combination of clopidogrel and aspirin are seen at all doses of aspirin; however, bleeding risk increased with higher doses of aspirin.209

In an evaluation of the 2,658 patients that underwent percutaneous coronary intervention (PCI) after randomization in the CURE study (PCI-CURE study), clopidogrel and placebo in addition to aspirin were compared for safety and efficacy.210 Patients received aspirin and the study drug [clopidogrel or placebo] for a median of ten days prior to PCI. Open-label use of ticlopidine or clopidogrel in addition to aspirin 75 to 325 mg daily was permitted for two to four weeks after stent placement and then the randomly assigned medication resumed for a mean of eight months. The primary endpoint was the composite of cardiovascular death, MI, or urgent revascularization within 30 days of the PCI. The rate of composite endpoint in the clopidogrel group was 4.5 percent compared to 6.4 percent in the placebo group within the first 30 days (relative risk 0.7; 95% CI, 0.5-0.97; p=0.03). As seen in the CURE study, clopidogrel patients had a lower incidence of cardiovascular death and MI or any revascularization compared to placebo (p=0.03) and a lower rate of cardiovascular death or MI (p=0.047). Bleeding rates between the groups did not differ significantly.

The COURAGE trial was a randomized, multicenter, 4.6-year study of 2,287 patients with stable coronary artery disease.211 Patients underwent PCI plus optimal medical therapy (PCI group) or optimal medical therapy alone. All patients received aspirin 81 to 325 mg per day or clopidogrel 75 mg per day, if patients were intolerant to aspirin. Patients undergoing PCI received both aspirin and clopidogrel. Both groups received beta blockers, statins, ACE inhibitors, as well as made lifestyle modifications of diet, exercise, and smoking cessation. The median follow-up
period was 4.6 years. The primary outcome of death from any cause and nonfatal MI occurred in 19 percent of the PCI group versus 18.5 percent of the optimal medical therapy group (hazard ratio 1.05, 95% CI, 0.87 to 1.27, p=0.62). More patients in the optimal medical therapy group required revascularization (32.6 percent) versus the PCI group (21.1 percent; p<0.001). PCI had the initial advantage of relieving angina; however, 74 percent of the PCI group versus 72 percent of the optimal medical therapy group did not experience angina at five years (p=0.35). PCI did not reduce the risk of death, MI, or other major cardiovascular events in comparison to optimal medical therapy in patients with stable CAD.

In the CREDO study, 2,116 patients who planned to have angioplasty were randomized to clopidogrel or placebo and followed for one year for the combined event rate of death, MI, or stroke. In the double-blind, placebo-controlled trial, patients randomized to clopidogrel received 300 mg prior to the revascularization or placebo. All patients received aspirin 325 mg daily and clopidogrel 75 mg daily for 28 days following stent placement. On day 29, patients then received clopidogrel or placebo, in addition to aspirin, as randomized prior to revascularization. At one year, 8.5 percent of the clopidogrel group had reached the composite endpoint (death, MI or stroke at one year) compared to 11.5 percent in the placebo group (26.9 percent relative risk reduction; 95% CI, 3.9 - 44.4 percent; p=0.02). Clopidogrel was not associated with a significant reduction in the combined event rate of death, MI, or urgent target vessel revascularization at 28 days. No significant difference was seen in the individual endpoints (death, MI, or death/MI) or bleeding over the one-year study period. During one year of follow-up, any bleeding (major or minor) occurred in 8.1 and 8.9 percent, major bleeding in 3.9 and 5.6 percent, and minor bleeding in 4.2 and 3.3 percent of placebo and clopidogrel treated patients, respectively. These differences were not significant. Major GI bleeding occurred in significantly more patients on clopidogrel compared to placebo (1.4 versus 0.3 percent, p=0.011).

In the MATCH trial, in patients who were already on clopidogrel 75 mg daily, the addition of aspirin 75 mg daily was compared to placebo to see if the combination had a greater benefit in preventing vascular events and to assess the potential for increased bleeding risk over 18 months. The study was a randomized, double-blind, placebo-controlled trial in 7,599 high risk patients having had a recent ischemic stroke or TIA and at least one additional risk factor who were already receiving clopidogrel therapy. The primary endpoint was a composite of ischemic stroke, MI, vascular death, or rehospitalization for acute ischemic attack [TIA, angina, worsening peripheral arterial disease (PAD)]. The primary endpoint was seen in 15.7 percent of the aspirin/clopidogrel group and 16.7 percent in the clopidogrel alone group (relative risk reduction of 6.4 percent [95% CI, -0.46 to 16.3], absolute risk reduction one percent [-0.6 to 2.71]). Combination therapy with clopidogrel and aspirin did not reduce the risk of major vascular events compared with clopidogrel monotherapy. The combination of aspirin and clopidogrel was associated with a higher rate of life-threatening bleeding episodes (2.6 percent) compared to clopidogrel monotherapy (1.3 percent). Major bleeding episodes were more common with the combination; however, mortality was unaffected.

CLARITY-TIMI-28 study: Clopidogrel was evaluated for safety and efficacy in the treatment of acute MI with ST-segment elevation in addition to standard treatment of fibrinolytics, aspirin, and weight-dosed heparin. Patients were scheduled to undergo angiography 48 to 192 hours after the start of the study medication. Patients between ages 18 and 75 years (n=3,491) who presented within 12 hours of ST-elevation were randomized to clopidogrel 300 mg loading dose then 75 mg daily or placebo. The rates of primary efficacy end point of composite of angiography identified occluded infarct-related arteries (TIMI flow grade 0 or 1) or death or
recurrent MI before angiography was reported in 21.7 percent of patients in the placebo group and 15 percent of patients in the clopidogrel group (6.7 percent difference; 95% CI, 24 to 47 percent; p<0.001). After 30 days, clopidogrel had a relative risk reduction of 20 percent for the composite of cardiovascular death, recurrent MI, or recurrent ischemia requiring revascularization (14.1 percent placebo versus 11.6 percent clopidogrel, p=0.03). Death from cardiovascular causes was similar between the groups and extremely low for the ST-segment acute MI population (2.6 and 2.2 percent for clopidogrel and placebo groups, respectively; p=0.49). Incidences of major bleeding (1.3 and 1.1 percent for clopidogrel and placebo groups, respectively) and intracranial hemorrhage were similar in both groups.

The PCI-CLARITY trial evaluated if pre-treatment with clopidogrel in the setting of PCI in patients with recent ST-segment elevation MI would affect the rate of major adverse cardiovascular events. Patients (n=1,863) were those who underwent PCI after the required angiography as a part of the CLARITY trial discussed above. In the double-blind, placebo-controlled trial, patients received aspirin and were randomized to receive clopidogrel 300 mg once then 75 mg daily or placebo in addition to the fibrinolytics and weight-based heparin for two to eight days until angiography. In patients undergoing PCI with stenting, open-labeled clopidogrel including the loading dose were administered after the angiography but prior to PCI. The primary outcome was the composite of cardiovascular death, MI, or stroke from date of PCI to 30 days after randomization. Pre-treatment with clopidogrel was associated with a significant reduction in the composite outcome (3.6 versus 6.2 percent, adjusted OR, 0.54; 95% CI, 0.35 – 0.85; p=0.008). From randomization to 30 days, the clopidogrel group had a significant reduction in cardiovascular death, MI, or stroke (7.5 versus 12 percent; adjusted OR 0.59; [95% CI, 0.43-0.81]; p=0.001). Bleeding was not significantly different between the groups. Authors concluded that aspirin plus clopidogrel in addition to fibrinolytics and heparin reduce the composite outcome and should be administered prior to and after PCI.

CHARISMA: Clopidogrel and aspirin were compared to aspirin alone in the prevention of the composite endpoint of MI, stroke, or cardiovascular death in a population of patients at high risk for cardiovascular diseases. In the prospective, double-blind, randomized trial, a total of 15,603 patients with a history of cardiovascular disease or multiple risk factors were randomized to clopidogrel 75 mg daily plus aspirin 75 to 162 mg daily or placebo plus aspirin 75 to 162 mg daily. After a median of 28 months, 6.8 percent of the clopidogrel-aspirin group and 7.3 percent of the placebo-aspirin group reported the primary endpoint (relative risk, 0.93; 95% CI, 0.83 to 1.05; p=0.22). The clopidogrel-aspirin group had significantly fewer patients report the secondary efficacy endpoint of the composite of MI, stroke, cardiovascular-related death, and hospitalizations due to unstable angina, TIA, and revascularization procedures (clopidogrel-aspirin: 16.7 percent, placebo-aspirin: 17.9 percent; relative risk 0.92 (95% CI, 0.86 to 0.995; p=0.04). A subgroup analysis found that patients with only risk factors (approximately 20 percent of total population) had a higher risk of death from all causes (5.4 versus 3.8 percent, p=0.04) and cardiovascular death (3.9 versus 2.2 percent, p=0.01) with both drugs than with aspirin alone. Those with established cardiovascular disease (nearly 80 percent of total population) had a lower risk in the primary end point with clopidogrel (6.9 versus 7.9 percent with placebo; RR=0.88; 95% CI, 0.77 to 0.988; p=0.046). The rate of severe bleeding was similar in both treatment groups with 1.7 percent and 1.3 percent for clopidogrel-aspirin and placebo-aspirin groups, respectively (relative risk, 1.25; 95% CI, 0.97 to 1.61 percent; p=0.09). Moderate bleeding occurred more often in patients on the combination therapy (2.1 versus 1.3 percent; relative risk 1.62 (95% CI, 1.27 to 2.1; p<0.001). The rate of intracranial hemorrhage was similar in the two treatment groups. Treatment discontinuation was reported in 20.4 and 18.2 percent of the clopidogrel-aspirin versus placebo-aspirin groups, respectively (p<0.001).
The COMMIT trial was a randomized, double-blinded trial in which the combination of clopidogrel and aspirin was compared to aspirin alone in 45,852 patients with suspected acute MI in 1,250 sites in China.218 Patients were randomized within 24 hours of suspected acute MI to clopidogrel 75 mg daily or placebo in addition to aspirin 162 mg daily until discharge or up to four weeks in the hospital. ST-segment elevation or bundle branch block was noted in 93 percent of patients, and ST-segment depression was noted in the remaining seven percent. Fibrinolysis was administered in half of the patients. Metoprolol use was also being evaluated in the same population. The two primary endpoints were 1) the composite of death, reinfarction, or stroke and 2) death from any cause. Clopidogrel-aspirin combination significantly reduced the risk of the composite of death, reinfarction, or stroke compared to aspirin alone [clopidogrel: 9.2 percent, (n=2,125) versus aspirin alone: 10.1 percent, (n=2,311); p=0.002]. All-cause mortality by hospital discharge was significantly lower in the clopidogrel group (7.5 versus 8.1 percent, p=0.03). Any type of major bleed (fatal, transfused, and cerebral bleeds) occurred in 0.58 and 0.55 percent of the clopidogrel-aspirin and placebo-aspirin groups, respectively (p=NS).

The Randomized Argentine Clopidogrel Stent (RACS) trial was a prospective, randomized, non-blinded study of 1,004 patients undergoing PCI who were randomized after successful bare metal stent placement to 30 versus 180 days of clopidogrel.219 All patients also received aspirin. The primary endpoint was a composite of death, MI, and stroke at 180 days. At hospital discharge and 30 days (when both arms received the same treatment), there were no significant differences in frequency of death, MI, or stroke. In comparison from 30 days to 180 days, the patients in the 180 days of clopidogrel reached the primary endpoint (death, MI, and stroke) less frequently (4.99 versus 1.74 percent, 65 percent relative risk reduction, p=0.010). No significant differences in frequency of total bleeding were reported.

Data from consecutive acute STEMI survivors and either concomitant therapy with aspirin or aspirin plus clopidogrel at discharge, who were prospectively enrolled in the Acute COronary Syndromes (ACOS) registry, were analyzed.220 The 5,886 patients were divided into three groups based on the initial reperfusion therapy (no reperfusion therapy n=1,445; fibrinolysis n=1,734; or primary PCI n=2,707). Mortality was significantly lower in the clopidogrel plus aspirin group versus the aspirin group in the total group as well as the reperfusion therapy [total group odds ratio (OR) 0.48, 95% CI, 0.48 to 0.61; no reperfusion therapy OR 0.96, 95% CI, 0.65 to 1.45; fibrinolysis OR 0.53, 95% CI, 0.32 to 0.87; primary PCI OR 0.38, 95% CI, 0.23 to 0.62].

clopidogrel (Plavix) versus ticlopidine (Ticlid) in coronary stenting

Clopidogrel and ticlopidine have been shown to reduce major adverse cardiac events at 30-days following successful coronary stent implantation.221,222,223,224,225,226 Differences in the studies include patient populations, dose regimens, timing of initial therapy, duration of therapy, outcome parameters, and follow-up study period. Many of the studies are small and located in single centers. While both drugs have been shown to provide a reduction in major adverse cardiac events following successful coronary stent implantation, it is difficult to determine if one agent is superior as many studies are not powered to detect possible differences in efficacy.227,228,229 In earlier studies, antiplatelet therapy with clopidogrel or ticlopidine with or without aspirin was given after PCI or stent placement whereas currently, clopidogrel and aspirin are given prior to PCI in much higher loading doses than previously studied.230,231,232,233,234
clopidogrel (Plavix) versus aspirin/dipyridamole ER (Aggrenox)

The PROFESS study was a randomized, double-blind, 2-by-2 factorial design, multicenter secondary stroke prevention trial.235 A total of 20,332 patients, who had a noncardioembolic ischemic stroke within the previous 120 days, were randomized to aspirin 25 mg/dipyridamole ER 200 mg twice daily or to clopidogrel 75 mg daily and followed for a mean of 2.5 years. The comparison for the primary outcome of recurrent stroke did not meet the predefined criterion for noninferiority (margin of 1.075 or a 75 percent noninferiority difference), and the number of recurrent strokes was similar between groups: recurrent stroke occurred in 9 percent and 8.8 percent of patients receiving aspirin/dipyridamole ER and clopidogrel, respectively, (HR, 1.01; 95% CI, 0.92 to 1.11). The secondary outcome of composite stroke, MI, or vascular death was identical between groups: 13.1 percent in each group (HR for aspirin/dipyridamole ER, 0.99; 95% CI, 0.92 to 1.07). More major hemorrhagic events were reported in the aspirin/dipyridamole ER group compared to clopidogrel, 4.1 percent versus 3.6 percent, respectively (HR, 1.15; 95% CI, 1 to 1.32), including intracranial hemorrhage (HR, 1.42; 95% CI, 1.11 to 1.83). Despite the increase in hemorrhage, the net risk of recurrent stroke or major hemorrhagic events was similar in the both groups: aspirin/dipyridamole ER 11.7 percent compared with clopidogrel 11.4 percent (HR, 1.03; 95% CI, 0.95 to 1.11).

dipyridamole (Persantine)

Very little new clinical data are available for dipyridamole monotherapy. Older data with dipyridamole provides evidence that in patients with prosthetic heart valves, the addition of dipyridamole to warfarin therapy reduces the incidence of systemic emboli.236 It should be noted that the extended-release dipyridamole formulation, not immediate-release dipyridamole, was used in the ESPS-2 and ESPRIT trials.237,238

prasugrel (Effient) versus clopidogrel (Plavix)

TRITON-TIMI 38: To compare prasugrel with clopidogrel, 13,608 patients with moderate to high risk acute ACS with scheduled PCI were randomized to receive prasugrel (60 mg loading dose, then 10 mg daily) or clopidogrel (300 mg loading dose, then 75 mg daily) for six to 15 months.239 The primary efficacy endpoint was death from CV causes, nonfatal MI, or nonfatal stroke. The key safety endpoint was major bleeding. The primary endpoint occurred in 12.1 percent of patients receiving clopidogrel and 9.9 percent of patients receiving prasugrel [hazard ratio (HR) versus clopidogrel, 0.81; 95% CI, 0.73 to 0.9; p<0.001]. There were also significant reductions in the prasugrel group in the rates of MI (9.7 versus 7.4 percent; p<0.001), urgent target-vessel revascularization (3.7 versus 2.5 percent; p<0.001), and stent thrombosis (2.4 versus 1.1 percent; p<0.001). Prasugrel patients experienced more major bleeding than those on clopidogrel (2.4 versus 1.8 percent; HR, 1.32; 95% CI, 1.03 to 1.68; p=0.03). Life-threatening bleeding (1.4 versus 0.9 percent; p=0.01), including nonfatal bleeding (1.1 versus 0.9 percent; p=0.23) and fatal bleeding (0.4 versus 0.1 percent; p=0.002), was also higher with prasugrel. The rate of study drug discontinuation because of adverse reactions was 7.2 percent for prasugrel and 6.3 percent for clopidogrel. Bleeding was the most common adverse reaction leading to study drug discontinuation for both drugs (2.5 percent for prasugrel and 1.4 percent for clopidogrel).

In patients undergoing PCI for STEMI, TIMI life-threatening bleeding and TIMI major or minor bleeding were similar with the two treatments. Only TIMI major bleeding after CABG surgery was significantly increased with prasugrel versus clopidogrel, 18.8 percent versus 2.7 percent, respectively. (p=0.0033).240
A post-hoc analysis of TRITON-TIMI 38 evaluated the efficacy and safety of prasugrel and clopidogrel in the setting of a glycoprotein (GP) IIb/IIIa inhibitor at 30 days. A total of 54.5 percent received a GP IIb/IIIa inhibitor. There was a consistent benefit of prasugrel over clopidogrel for reducing CV death, MI, or stroke in patients who did (HR, 0.76; 95% CI, 0.64 to 0.90) or did not receive a GP IIb/IIIa inhibitor (HR, 0.78; 95% CI, 0.63 to 0.97, p=0.83). Although subjects treated with a GP IIb/IIIa inhibitor had greater rates of bleeding, the risk of major or minor bleeding with prasugrel versus clopidogrel was not significantly different in patients who were or were not treated with a GP IIb/IIIa inhibitor (p=0.19).

A pre-specified analysis, compared prasugrel with clopidogrel in patients with diabetes mellitus (DM) in TRITON-TIMI 38. A total of 3,146 subjects had a preexisting history of DM including 776 receiving insulin. The primary end point was reduced significantly with prasugrel among subjects without DM (9.2 percent versus 10.6 percent; hazard ratio [HR], 0.86; p=0.02) and with DM (12.2 percent versus 17 percent; HR, 0.7; p<0.001). A benefit for prasugrel was observed among DM patients on insulin (14.3 percent versus 22.2 percent; HR, 0.63; p=0.009) and those not on insulin (11.5 percent versus 15.3 percent; HR, 0.74; p=0.009). MI was reduced with prasugrel by 18 percent among subjects without DM (7.2 percent versus 8.7 percent; HR, 0.82; p=0.006) and by 40 percent among subjects with DM (8.2 percent versus 13.2 percent; HR, 0.6; p<0.001). The TIMI major hemorrhage was increased among subjects without DM on prasugrel (1.6 percent versus 2.4 percent; HR, 1.43; p=0.02), but the rates were similar among subjects with DM for clopidogrel and prasugrel (2.6 percent versus 2.5 percent; HR, 1.06; p=0.81). Net clinical benefit (death, nonfatal myocardial infarction, nonfatal stroke, and nonfatal TIMI major bleeding) with prasugrel was greater for DM patients (14.6 percent versus 19.2 percent; HR, 0.74; p=0.001) than for patients without DM (11.5 percent versus 12.3 percent; HR, 0.92; p=0.16).

ticlopidine (Ticlid)

The Canadian American Ticlopidine Study (CATS) study followed patients (n=1,072) for a mean of 24 months and reported that ticlopidine 250 mg twice daily reduced the relative risk of stroke, MI, or vascular death by 30 percent (95% CI, 7.5 to 48.3, p=0.006) compared with placebo in stroke patients. An intention-to-treat analysis gave a smaller estimate of relative risk reduction for stroke, myocardial infarction, or vascular death (23.3 percent, p=0.02). Adverse experiences associated with ticlopidine included neutropenia (severe in about one percent of cases) and skin rash and diarrhea (severe in two percent of cases each); all were reversible.

ticlopidine (Ticlid) versus aspirin

A randomized, double-blind trial enrolling 1,809 Black patients with a recent history of noncardioembolic ischemic stroke compared the efficacy and safety of aspirin and ticlopidine to prevent recurrent strokes, MI, and vascular death. Patients were given either aspirin 650 mg daily or ticlopidine 250 mg twice daily and were followed for two years. The study was stopped early due to the low probability of ticlopidine being superior to aspirin. The primary composite outcome was recurrent stroke, MI, or vascular death that occurred in 14.7 percent of ticlopidine patients and 12.3 percent of aspirin patients (hazard ratio, 1.22; 95% CI, 0.94 to 1.57). Neutropenia was reported in 3.4 percent of ticlopidine patients compared to 2.2 percent of aspirin patients (p=0.12). One possible case of thrombotic thrombocytopenia purpura was reported in the ticlopidine treated group.
Meta-Analysis

A meta-analysis of serious vascular events (MI, stroke, or vascular death) and major bleeds in six primary prevention trials and 16 secondary prevention trials compared long-term aspirin versus control. In the primary prevention trials, aspirin allocation yielded a 12 percent proportional reduction in serious vascular events (0.51 percent aspirin versus 0.57 percent control per year, p=0.0001), due mainly to a reduction of about a fifth in non-fatal MI (0.18 percent versus 0.23 percent per year, p<0.0001). The net effect on stroke was not significant (0.2 percent versus 0.21 percent per year, p=0.4). Aspirin increased major GI and extracranial bleeds (0.1 percent versus 0.07 percent per year, p<0.0001). In the secondary prevention trials, aspirin yielded a greater absolute reduction in serious vascular events (6.7 percent versus 8.2 percent per year, p<0.0001), with a non-significant increase in hemorrhagic stroke but reductions of about a fifth in total stroke (2.08 percent versus 2.54 percent per year, p=0.002) and in coronary events (4.3 percent versus 5.3 percent per year, p<0.0001). In both primary and secondary prevention trials, the proportional reductions in the aggregate of all serious vascular events seemed similar for men and women.

Dipyridamole has no clear evidence of substantial benefit on vascular death compared to controls based on a systematic review evaluating the role of dipyridamole for preventing stroke and other vascular events in patients with vascular disease. A total of 29 trials with 23,019 participants were included. Compared to the control group, dipyridamole had no effect on vascular death (relative risk 0.99, 95% CI, 0.87 to 1.12). The dose of dipyridamole did not influence the outcome nor did the type of vascular disease at presentation. For the risk of vascular events, dipyridamole did significantly reduce the risk only for patients presenting with cerebral ischemia. There was no evidence that dipyridamole monotherapy was more efficacious than aspirin.

The combination of aspirin with dipyridamole ER (Aggrenox) has shown to be beneficial in the Second European Stroke Prevention Study (ESPS-2) in patients with cerebral ischemia. A meta-analysis pooling data from five trials with a total of 11,459 patients with a history of TIA or ischemic stroke found that aspirin/dipyridamole reduced the composite of nonfatal stroke, nonfatal MI, and vascular death as compared with aspirin alone (OR, 0.84; 95% CI, 0.72 to 0.97), dipyridamole alone (OR, 0.76; 95% CI, 0.64 to 0.9), or control (OR, 0.66; 95% CI, 0.57 to 0.75). It should be noted that 57 percent of the data were from the ESPS-2 trial.

A meta-analysis of six randomized trials with 7,648 patients showed a significant reduction in the overall stroke risk ratio with aspirin plus dipyridamole compared with aspirin alone (relative risk 0.77, 95% CI, 0.67 to 0.89) and composite outcome of stroke, MI, or vascular death with relative risk 0.85 (0.76 to 0.94). Studies using immediate-release dipyridamole showed a nonstatistically significant trend in favor of the combination for stroke alone with relative risk 0.83 (0.59 to 1.15) and for the composite outcome with relative risk 0.95 (0.75 to 1.19). Studies using predominantly extended-release dipyridamole showed a statistically significant difference in favor of the combination for stroke alone with relative risk 0.76 (0.65 to 0.89) and for the composite outcome with relative risk 0.82 (0.73 to 0.92). Approximately 80 percent of the patients in this meta-analysis were from the ESPS-2 and ESPRIT trials.

A meta-analysis of three randomized trials, PCI-CURE, CREDO, and PCI-CLARITY, was performed to evaluate the efficacy and safety of clopidogrel (Plavix) pre-treatment before PCI intervention with and without glycoprotein IIb/IIIa inhibitor (GPI) use. A total of 6,325 patients were included; 32.4 percent of them received a GPI. There was a consistent benefit of...
clopidogrel pretreatment in reducing the incidence of cardiovascular death, MI, or stroke after PCI both in patients who did not receive a GPI (OR 0.72, 95% CI 0.53 to 0.98, p=0.03) and in those who did (OR 0.69, 95% CI 0.47 to 1, p=0.05). Clopidogrel pretreatment was not associated with a significant increase in bleeding.

Summary

Platelet aggregation inhibitors are used to prevent and treat a variety of thrombotic events including MI, stroke and TIA, and peripheral arterial disease. Various guidelines have specific recommendations for platelet aggregation inhibitor use.

For the prevention of secondary ischemic stroke, although aspirin, the combination of aspirin/dipyridamole (Aggrenox), and clopidogrel (Plavix) all remain acceptable treatment options; aspirin/dipyridamole (Aggrenox) is now given consideration over aspirin monotherapy. Clopidogrel (Plavix) is also recommended over aspirin monotherapy and is a reasonable option in aspirin-intolerant patients. The combination of clopidogrel (Plavix) with aspirin increases the risk of hemorrhage, therefore combination therapy is not routinely recommended for ischemic stroke or TIA patients in the absence of a specific indication for use (e.g. ACS or coronary stent).

For the treatment of acute ischemic stroke, early aspirin therapy (initial dose 150 mg to 325 mg) is recommended in patients who are not receiving thrombolysis.

In the setting of UA/NSTEMI, aspirin should be given indefinitely. Clopidogrel (Plavix) is a reasonable option in aspirin-intolerant patients. In addition to aspirin, clopidogrel (Plavix) should be given ideally for up to 12 months.

STEMI patients should receive dual antiplatelet therapy with clopidogrel (Plavix) long-term and aspirin indefinitely, regardless of whether or not they undergo reperfusion with fibrinolytic therapy.

The combination of clopidogrel (Plavix) 75 mg daily and indefinite aspirin 75 mg to 100 mg daily is recommended for patients experiencing ST-segment elevation (STE) and NSTE ACS. In the STE ACS population, clopidogrel (Plavix) is recommended for duration of two to four weeks with the suggestion of continuing therapy up to 12 months post hospital discharge. In the NSTE ACS patient population, clopidogrel (Plavix) is recommended for 12 months. Clopidogrel (Plavix) as monotherapy is recommended for patients with contraindications to aspirin.

The combination of aspirin and clopidogrel (Plavix) or prasugrel (Effient) for at least 12 months is recommended in patients with both bare metal stent and drug-eluting stent placement. In patients with drug-eluting stents who do not have bleeding or tolerability issues, the indefinite combination of aspirin and clopidogrel (Plavix) should be considered. Premature discontinuation of the antiplatelet regimen greatly increases restenosis, MI, and death.

In patients with peripheral arterial disease (PAD), aspirin is recommended over clopidogrel (Plavix) to decrease the incidence of MI, stroke, and vascular death.

Serious hematologic adverse effects limit the utility of ticlopidine.

Prasugrel (Effient) is approved to reduce CV events in ACS patients undergoing PCI, and it appears to be more effective than clopidogrel in preventing MI and stent thrombosis in this population. However, these gains are tempered by a significant increase in bleeding events.
Prasugrel is not significantly affected by genetic variations that reduce CYP2C19 enzymes, therefore is not expected to be affected by pharmacogenomics. PPIs are not expected to interact with prasugrel.

Clopidogrel has been established for use in the management of a variety of CV and cerebrovascular conditions associated with thrombotic events. However, recent evidence indicates that patients with genetically reduced CYP2C19 function have lower systemic exposure to the active metabolite of clopidogrel, diminished antiplatelet responses, and generally exhibit higher CV event rates following MI than patients with normal CYP2C19 function. Furthermore, concomitant use of PPIs (particularly PPIs extensively inhibited by CYP2C19) may increase CV events. The 2008 ACCF/ACG/AHA expert consensus recommends the use of PPIs in patients who are receiving NSAIDs, aspirin, dual antiplatelet therapy, or at risk for GI injury. However in May 2009, in response to the Clopidogrel Medco Outcomes Study, the Society for Cardiovascular Angiography and Interventions (SCAI) warned health care providers who are treating post-stent patients on dual antiplatelet therapy to consider alternative therapy with histamine-2 (H2) blockers or antacids instead of a PPI, when appropriate, while recognizing that more research is needed on this topic. Also, in November 2009, the FDA issued an update to the Early Communication about an Ongoing Safety Review for clopidogrel and its effectiveness when used in combination with PPIs due to potential increased risk of CV events. Currently, the FDA recommends against the concomitant use of clopidogrel and the PPIs, omeprazole and esomeprazole, which may lead to a reduced anti-clotting effect of clopidogrel. Based on the current scientific information, the clopidogrel label has been updated with new warnings on omeprazole and other drugs that inhibit the CYP2C19 enzyme that could interact with clopidogrel in the same way. In addition, the manufacturer of Plavix (clopidogrel) is conducting follow-up studies to explore this and other drug interactions, including other PPIs.

In addition, further emphasis should be placed on pharmacogenetic properties that play a role in the metabolism of clopidogrel. The effectiveness of clopidogrel is dependent on its metabolism to its active metabolite, largely by CYP2C19. Poor metabolizers treated with clopidogrel exhibit higher cardiovascular event rates following ACS or PCI than patients with normal CYP2C19 function. Tests are available to identify a patient's CYP2C19 genotype and can aid in determining therapeutic strategies.

References
1 Aggrenox [package insert]. Ridgefield, CT; Boehringer-Ingelheim; October 2009.
3 Persantine [package insert]. Ridgefield, CT; Boehringer Ingelheim; August 2005.
4 Effient [package insert]. Indianapolis, IN; Eli Lilly; July 2009.
5 Ticlid [package insert]. Nutley, NJ; Roche Laboratories; February 2002.
Platelet Aggregation Inhibitors

Platelet Aggregation Inhibitors

Restricted Access – Proprietary and/or Confidential. Do not disseminate or copy without approval.
Platelet Aggregation Inhibitors

86 Persantine [package insert]. Ridgefield, CT; Boehringer Ingelheim; August 2005.

87 Aggrenox [package insert]. Ridgefield, CT; Boehringer-Ingelheim; October 2009.

Platelet Aggregation Inhibitors

129 Aggrenox [package insert]. Ridgefield, CT; Boehringer-Ingelheim; October 2009.
130 Aggrenox [package insert]. Ridgefield, CT; Boehringer-Ingelheim; October 2009.
132 Persantine [package insert]. Ridgefield, CT; Boehringer Ingelheim; August 2005.
133 Effient [package insert]. Indianapolis, IN; Eli Lilly; July 2009.
138 Effient [package insert]. Indianapolis, IN; Eli Lilly; July 2009.
153 Aggrenox [package insert]. Ridgefield, CT; Boehringer-Ingelheim; October 2009.
155 Effient [package insert]. Indianapolis, IN; Eli Lilly; July 2009.
159 Aggrenox [package insert]. Ridgefield, CT; Boehringer-Ingelheim; October 2009.
162 Persantine [package insert]. Ridgefield, CT; Boehringer Ingelheim; August 2005.
163 Effient [package insert]. Indianapolis, IN; Eli Lilly; July 2009.
165 Persantine [package insert]. Indianapolis, IN; Eli Lilly; July 2009.
166 Effient [package insert]. Indianapolis, IN; Eli Lilly; July 2009.
168 Aggrenox [package insert]. Ridgefield, CT; Boehringer-Ingelheim; October 2009.
180 Aggrastat [package insert]. Ridgefield, CT; Boehringer-Ingelheim; October 2009.
182 Persantine [package insert]. Ridgefield, CT; Boehringer Ingelheim; August 2005.
183 Effient [package insert]. Indianapolis, IN; Eli Lilly; July 2009.
184 Ticlid [package insert]. Nutley, NJ; Roche Laboratories; February 2002.
Platelet Aggregation Inhibitors

93 Bertrand ME, Rupprecht HJ, Urban P, et al. Double-blind study of the safety of clopidogrel with and without a loading dose in

Restricted Access – Proprietary and/or Confidential. Do not disseminate or copy without approval.

