INTRODUCTION

- **Respiratory** beta-agonist combination agents include a beta-agonist combined with an inhaled corticosteroid (ICS), inhaled anticholinergic, or both. Beta-agonists can be short-acting beta-agonists (SABA) or long-acting beta-agonists (LABA); most combinations contain a LABA. Similarly, inhaled anticholinergics, also known as muscarinic antagonists, can be short-acting muscarinic antagonists (SAMA) or long-acting muscarinic antagonists (LAMA); most combinations contain a LAMA.
- Individual beta-agonist combinations are Food and Drug Administration (FDA) approved for the treatment of asthma, chronic obstructive pulmonary disease (COPD), or both.
 - All combinations of a beta2-agonist and an ICS are indicated for the treatment of asthma, and some are additionally indicated for the treatment of COPD.
 - Combinations of a beta2-agonist and an anticholinergic medication are indicated for COPD, as is the one available LAMA/LABA/ICS triple combination agent.
 - Refer to Tables 2A, 2B, and 2C for specific indications for each product.
- Asthma is a chronic lung disease that inflames and narrows the airways. Asthma causes recurring periods of wheezing, chest tightness, shortness of breath, and coughing. Asthma affects people of all ages, but most often starts during childhood. In the United States (U.S.), more than 25 million people are known to have asthma, including about 7 million children (*National Heart, Lung, and Blood Institute [NHLBI] 2017*).
- COPD is characterized by persistent respiratory symptoms and airflow limitation due to airway and/or alveolar abnormalities. The abnormalities are usually caused by exposure to noxious particles or gases, and cigarette smoking is a key risk factor. Airflow limitation is caused by a combination of small airway disease (eg, obstructive bronchiolitis) and parenchymal destruction (emphysema). The most common symptoms of COPD include dyspnea, cough, and sputum production (*Global Initiative for Chronic Obstructive Lung Disease [GOLD] 2019*). COPD affects 6.4% of the U.S. population and is a major contributor to mortality from chronic lower respiratory diseases, the third leading cause of death in the U.S. (*Centers for Disease Control and Prevention 2018*).
- Medispan class/subclass: Sympathomimetics/Adrenergic Combinations

<table>
<thead>
<tr>
<th>Table 1. Medications Included Within Class Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Beta2-agonist & corticosteroid combinations</td>
</tr>
<tr>
<td>Advair Diskus & Advair HFA (fluticasone propionate/salmeterol)</td>
</tr>
<tr>
<td>AirDuo RespClick (fluticasone propionate/salmeterol)</td>
</tr>
<tr>
<td>Breo Ellipta (fluticasone furoate/vilanterol)</td>
</tr>
<tr>
<td>Dulera (mometasone furoate/formoterol fumarate dihydrate)</td>
</tr>
<tr>
<td>Symbicort (budesonide/formoterol fumarate dihydrate)</td>
</tr>
<tr>
<td>Beta2-agonist & anticholinergic combinations</td>
</tr>
<tr>
<td>Anoro Ellipta (umeclidinium/vilanterol)</td>
</tr>
<tr>
<td>Bevespi Aerosphere (glycopyrrolate/formoterol fumarate)</td>
</tr>
<tr>
<td>Combivent Respimat (ipratropium/albuterol)</td>
</tr>
<tr>
<td>ipratropium/albuterol solution</td>
</tr>
<tr>
<td>Stiolto Respimat (tiotropium/olodaterol)</td>
</tr>
<tr>
<td>Utibron NeoHaler (glycopyrrolate/indacaterol)</td>
</tr>
<tr>
<td>Triple combination</td>
</tr>
<tr>
<td>Trelegy Ellipta (fluticasone furoate/umeclidinium/vilanterol)</td>
</tr>
</tbody>
</table>

* Authorized generic
† Branded product DuoNeb is no longer marketed.
Table 2A. FDA-Approved Indications for Beta₂-agonist/Corticosteroid Combination Agents

<table>
<thead>
<tr>
<th>Indication</th>
<th>Advair Diskus</th>
<th>Advair HFA</th>
<th>AirDuo RespiClick</th>
<th>Breo Ellipta</th>
<th>Dulera</th>
<th>Symbicort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of asthma</td>
<td></td>
<td>(age ≥ 4 years)</td>
<td>(age ≥ 12 years)</td>
<td>(age ≥ 12 years)</td>
<td>(age ≥ 18 years)</td>
<td>(age ≥ 12 years)</td>
</tr>
<tr>
<td>Maintenance treatment of airflow obstruction in patients with COPD,</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>including chronic bronchitis and/or emphysema</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(250/50 strength only)</td>
<td>(250/50 strength only)</td>
<td>(100/25 strength only)</td>
<td>(160/4.5 strength only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To reduce exacerbations of COPD in patients with a history of exacerbations</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(250/50 strength only)</td>
<td>(250/50 strength only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2B. FDA-Approved Indications for Beta₂-agonist/Anticholinergic Combination Agents

<table>
<thead>
<tr>
<th>Indication</th>
<th>Anoro Ellipta</th>
<th>Bevespi Aerosphere</th>
<th>Combivent Respimat</th>
<th>ipratropium/albuterol solution</th>
<th>Stiolto Respimat</th>
<th>Utibron Neohaler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term, once-daily, maintenance treatment of airflow obstruction in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>patients with COPD, including chronic bronchitis and/or emphysema</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term, twice-daily, maintenance treatment of airflow obstruction in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>patients with COPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For use in patients with COPD on a regular aerosol bronchodilator who</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>continue to have evidence of bronchospasm and who require a second</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bronchodilator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For the treatment of bronchospasm associated with COPD in patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>requiring more than 1 bronchodilator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Prescribing information: Anoro Ellipta 2017, Bevespi Aerosphere 2017,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combivent Respimat 2016, ipratropium/albuterol solution 2015, Stiolto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respimat 2018, Utibron Neohaler 2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2C. FDA-Approved Indication for Triple Combination Agent

<table>
<thead>
<tr>
<th>Indication</th>
<th>Trelegy Ellipta</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the long-term, once-daily, maintenance treatment of airflow obstruction</td>
<td>✓</td>
</tr>
<tr>
<td>in patients with COPD, including chronic bronchitis and/or emphysema.</td>
<td></td>
</tr>
<tr>
<td>Trelegy Ellipta is also indicated to reduce exacerbations of COPD in</td>
<td></td>
</tr>
<tr>
<td>patients with a history of exacerbations.</td>
<td></td>
</tr>
</tbody>
</table>

(Trelegy Ellipta prescribing information 2018)
CLINICAL EFFICACY SUMMARY

Beta2-agonist/corticosteroid combinations for asthma and COPD

Comparisons to placebo, monotherapy, combined use of individual components, varied treatments, or usual care:

- Although a synergistic effect of combination inhalers has been suggested by some data, overall there are similar efficacy between the administration of the combination ICS/LABA products and their individual components used in combination (Chapman et al 1999, Jenkins et al 2006, Marceau et al 2006, Nelson et al 2003b, Noonan et al 2006, Perrin et al 2010, Rosenhall et al 2002). Improved adherence with combination inhalers has also been suggested but not been shown conclusively (Marceau et al 2006, Perrin et al 2010).

- A large, double-blind, randomized trial (N = 6112) compared fluticasone propionate/salmeterol 500/50 mcg twice daily to its individual components and to placebo over a 3-year period in patients with COPD (Calverley et al 2007). The primary endpoint, time to death from any cause, for the combination vs placebo failed to reach statistical significance (12.6% vs 15.2%; p = 0.052). However, the difference in mortality between the combination therapy and fluticasone monotherapy did reach statistical significance (12.6% vs 16%; p = 0.007). Treatment with the combination regimen resulted in significantly fewer exacerbations, improved health status, and improved lung function compared with placebo.

- A large, double-blind, randomized trial (SUMMIT; N = 16,590) evaluated the use of fluticasone furoate/vilanterol vs fluticasone furoate alone, vilanterol alone, or placebo in a population of patients with moderate COPD and heightened cardiovascular risk (age ≥ 60 years and receiving medication for ≥2 of the following: hypercholesterolemia, hypertension, diabetes mellitus, or peripheral arterial disease) (Vestbo et al 2016a). Compared with placebo, there was no significant benefit or worsening in all-cause mortality with combination therapy (hazard ratio [HR], 0.88 [95% confidence interval (CI), 0.74 to 1.04; p = 0.137]) or with the components (fluticasone furoate HR, 0.91 [95% CI, 0.77 to 1.08; p = 0.284]; vilanterol HR, 0.96 [95% CI, 0.81 to 1.14; p = 0.655]). Composite cardiovascular events were also similar in the 4 groups (3.9% to 4.4%). All treatments reduced the risk of moderate to severe COPD exacerbations compared to placebo, with percent reductions of 29% (95% CI, 22 to 35), 12% (95% CI, 4 to 19), and 10% (95% CI, 2 to 18) in the fluticasone furoate/vilanterol, fluticasone furoate, and vilanterol groups, respectively.

- A 12-month, randomized, open-label trial (Salford Lung Study; N = 2799) compared the use of fluticasone furoate/vilanterol 100/25 mcg daily to continuation of usual care in a real-world patient population in the United Kingdom (Vestbo et al 2016b). Enrolled patients had COPD, had had ≥ 1 exacerbations in the previous 3 years, and were taking regular maintenance inhaler therapy (≥ 1 long-acting bronchodilators; ICS alone or in combination with a long-acting bronchodilator; or a combination of ICS, LABA, and LAMA). The primary endpoint, the rate of moderate or severe exacerbations among patients who had had an exacerbation within 1 year before the trial, was 1.74 per year in the fluticasone furoate/vilanterol group and 1.90 per year in the usual-care group, for a difference of 8.4% (95% CI, 1.1 to 15.2; p = 0.02). Serious adverse events, including pneumonia, were similar between the 2 groups.

- A meta-analysis of 19 trials evaluated the use of ICS/LABA combinations compared to placebo in patients with COPD, and demonstrated a significant reduction in exacerbation rate between fluticasone propionate/salmeterol and placebo and between budesonide/formoterol and placebo (Nannini et al 2013a). For the number of patients who experienced ≥ 1 exacerbations, the differences between fluticasone propionate/salmeterol vs placebo and mometasone furoate/formoterol 200/100 mcg strength vs placebo were not statistically significant; however, the mometasone
furoate/formoterol 400/10 mcg strength was associated with a lower proportion of patients experiencing ≥ 1 exacerbation. This meta-analysis also demonstrated that when results for all combined inhalers vs placebo were pooled, there was an overall reduction in mortality (odds ratio [OR], 0.82; 95% CI, 0.68 to 0.99).

- A meta-analysis of 14 trials evaluated the use of ICS/LABA combinations compared to use of the same LABA as monotherapy in patients with COPD (Nannini et al 2012). This analysis demonstrated that exacerbation rates were reduced with ICS/LABA combination therapy compared to LABA monotherapy (rate ratio, 0.76; 95% CI, 0.68 to 0.84). However, there was a significant increase in the incidence of pneumonia with combination therapy compared to LABA monotherapy (OR, 1.55; 95% CI, 1.2 to 2.01).

- A meta-analysis of 15 trials evaluated the use of ICS/LABA combinations compared to use of ICS monotherapy in patients with COPD (Nannini et al 2013b). This analysis demonstrated that exacerbation rates were significantly reduced with ICS/LABA combination therapy vs ICS monotherapy (rate ratio, 0.87; 95% CI, 0.80 to 0.94). Adverse events were similar between treatments; pneumonia rates as diagnosed by chest x-ray were lower than those reported in earlier trials.

- A meta-analysis of 14 trials (total N = 6641) compared fluticasone furoate/vilanterol to placebo, fluticasone furoate monotherapy, fluticasone propionate monotherapy, vilanterol monotherapy, or fluticasone propionate/salmeterol in patients with asthma (Dwan et al 2016). Primary endpoints included health-related quality of life (HRQoL) and severe asthma exacerbations (defined by hospital admission or treatment with oral corticosteroids). Fewer than half of the studies reported on these primary endpoints, and there were few opportunities to combine results from the included studies. One of the 14 studies evaluated HRQoL (as measured by the Asthma Quality of Life Questionnaire [AQLQ]) for fluticasone furoate/vilanterol 100/25 mcg vs placebo; it identified a significant advantage of fluticasone furoate/vilanterol (mean difference, 0.30; 95% CI, 0.14 to 0.46). Two studies compared fluticasone furoate/vilanterol 100/25 mcg vs placebo with respect to exacerbations; both studies reported no exacerbations in either treatment arm. No comparisons relevant to the primary outcomes were found for fluticasone furoate/vilanterol at a higher dose (200/25 mcg) vs placebo. There was insufficient evidence to assess whether once-daily fluticasone furoate/vilanterol had better or worse safety or efficacy compared to twice-daily fluticasone propionate/salmeterol. The authors stated that firm conclusions could not be drawn due to the limited number of studies, variety of endpoints, and short duration of most trials.

- Several large studies focused primarily on safety endpoints, with efficacy endpoints as secondary (Peters et al 2016, Stempel et al 2016a, Stempel et al 2016b). The studies compared the use of ICS/LABA combinations to ICS monotherapy in patients with asthma. These studies each demonstrated non-inferiority of the ICS/LABA combination to ICS monotherapy for the risk of serious asthma-related events, offering reassurance for the safety of these agents.

 - A randomized, double-blind study (AUSTRI; N = 11,679) enrolled adults and adolescents (age ≥ 12 years) with persistent asthma and a history of exacerbation within the previous year (Stempel et al 2016a). Patients were randomized to receive fluticasone propionate/salmeterol or fluticasone propionate monotherapy for 26 weeks. Patients were stratified by their baseline asthma control questionnaire (ACQ)-6 score and current asthma medication to determine the fluticasone propionate dose (100, 250, or 500 mcg twice daily) and were randomized to receive this dose with or without concomitant salmeterol.

 - The primary safety endpoint was the first serious asthma-related event, a composite endpoint that included death, endotracheal intubation, and hospitalization. There were 36 events in 34 patients in the fluticasone propionate/salmeterol group and 38 events in 33 patients in the fluticasone propionate group (HR, 1.03; 95% CI, 0.64 to 1.66). Fluticasone propionate/salmeterol was shown to be non-inferior to fluticasone propionate for this endpoint. There were no asthma-related deaths.

 - The main efficacy endpoint was the first severe asthma exacerbation, defined as asthma deterioration leading to the use of systemic glucocorticoids for ≥ 3 days or an asthma-related hospitalization or emergency department visit leading to the use of systemic glucocorticoids. At least 1 severe asthma exacerbation was reported in 480 patients (8%) in the fluticasone propionate/salmeterol group and in 597 patients (10%) in the fluticasone propionate group (HR, 0.79; 95% CI, 0.70 to 0.89; p < 0.001).

 - A similarly designed trial (VESTRI; N = 6208) enrolled pediatric patients 4 to 11 years of age (Stempel et al 2016b). Enrolled patients had a history of exacerbation within the previous year and consistent use of asthma medication during the 4 weeks before enrollment. Patients were randomized, on the basis of pretrial medication, Childhood Asthma Control Test (C-ACT) score, and exacerbation history, to receive fluticasone propionate/salmeterol 100/50 mcg or 250/50 mcg or fluticasone propionate alone 100 mcg or 250 mcg twice daily for 26 weeks.

 - The primary safety endpoint, the first serious asthma-related event (death, intubation, or hospitalization), occurred in 27 patients in the fluticasone propionate/salmeterol group and 21 patients in the fluticasone propionate group.
Comparisons between different ICS/LABA combinations

There are some data available comparing different combination ICS/LABA products for the treatment of COPD.

- One crossover study comparing budesonide/formoterol to fluticasone propionate/salmeterol demonstrated no significant difference between products for the primary endpoint, the increase from baseline in peak expiratory flow 5 minutes after the morning dose (Partridge et al 2009). However, the mean morning forced expiratory volume in 1 second (FEV₁) improved more with budesonide/formoterol at 5 minutes and 15 minutes post-dose compared to fluticasone propionate/salmeterol.

- Several published trials compared fluticasone furoate/vilanterol to fluticasone propionate/salmeterol in patients with COPD. Three of the trials were published together; pooled results demonstrated a greater improvement with fluticasone furoate/vilanterol 100/25 mcg once daily compared to fluticasone propionate/salmeterol 250/50 mcg twice daily on the primary endpoint, the weighted mean (wm) FEV₁ (0 to 24 hr) (Dransfield et al 2014). However, 2 of these 3 trials did not demonstrate a significant difference on this endpoint. An additional trial compared fluticasone furoate/vilanterol 100/25 mcg daily to fluticasone propionate/salmeterol 500/50 mcg twice daily, and found no significant difference between groups on the wm FEV₁ (0 to 24 hr) (Agusti et al 2014).

- There have been several trials comparing combination ICS/LABA products to one another for the treatment of asthma.

- Several head-to-head trials have compared budesonide/formoterol to fluticasone propionate/salmeterol. The trials varied in their design and the doses of medications. In general, these head-to-head trials have failed to demonstrate that one product is consistently superior to the other. Some trials showed benefits for fluticasone propionate/salmeterol on some endpoints (Dahl et al 2006, Fitzgerald et al 2005, Price et al 2007); some showed benefits for budesonide/formoterol (Aalbers et al 2004, Palmqvist et al 2001), and another showed no significant differences between the 2 products (Busse et al 2008).

- A meta-analysis of 5 trials comparing fluticasone propionate/salmeterol 250/50 mcg twice daily vs varied doses of budesonide/formoterol twice daily failed to demonstrate significant differences in exacerbations, asthma-related serious adverse events, FEV₁, rescue medication use, symptom scores, or peak expiratory flow (Lasserson et al 2011).
Comparisons of combination beta2-agonist/anticholinergic products to bronchodilator monotherapy:

- A head-to-head trial comparing mometasone/formoterol to fluticasone propionate/salmeterol demonstrated non-inferiority for mometasone/formoterol for the primary endpoint of FEV1 area under the curve (AUC) (0 to 12 hr) (Bernstein et al 2011). Treatment with mometasone/formoterol demonstrated a rapid onset of action, with significantly greater effects on FEV1 at all time points up to 30 minutes post-dose compared to fluticasone propionate/salmeterol. Other secondary endpoints were not significantly different between groups.

- A head-to-head trial comparing fluticasone furoate/vilanterol 100/25 mcg daily to fluticasone propionate/salmeterol 250/50 mcg twice daily demonstrated no significant differences between treatments on the primary endpoint, the wmm FEV1 (0 to 24 hr) (Woodcock et al 2013). There were also no significant differences in key secondary endpoints, including the time to onset of bronchodilator effect, percentage of patients obtaining ≥ 12% and ≥ 200 mL increase from baseline in FEV1 at 12 hours and 24 hours, and change from baseline in trough FEV1. Another trial comparing fluticasone furoate/vilanterol with fluticasone propionate/salmeterol demonstrated noninferiority of fluticasone furoate/vilanterol to fluticasone propionate/salmeterol in evening trough FEV1 at week 24 (Bernstein et al 2018).

ICS/LABA compared to tiotropium or in combination with tiotropium for COPD

- A double-blind, double-dummy, 2-year trial (N = 1323) compared the use of fluticasone propionate/salmeterol 250/50 mcg twice daily to tiotropium 18 mcg daily in patients with COPD (Wedzicha et al 2008). This trial demonstrated no significant difference between groups in the rate of exacerbations or post-dose FEV1. The study demonstrated higher mortality in the tiotropium group (6%) compared to the fluticasone propionate/salmeterol group (3%). This study was limited by the high number of withdrawals, which were unevenly distributed between the study arms.

- A double-blind, double-dummy, 12-week trial (N = 494) compared the use of umeclidinium/vilanterol 62.5/25 mcg daily to tiotropium 18 mcg daily in patients with COPD who had been treated with tiotropium monotherapy at the time of enrollment (Kerwin et al 2017a). The primary endpoint, trough FEV1, showed improved efficacy in the group that stepped up to combination therapy, with a between-group difference of 88 mL (95% CI, 45 to 131; p < 0.001). Improvements with umeclidinium/vilanterol were also observed in some secondary endpoints, including the use of rescue medication use and transition dyspnea index (TDI) score.

- A double-blind, double-dummy, 12-week trial (N = 623) evaluated the use of fluticasone furoate/vilanterol 100/25 mcg daily and tiotropium 18 mcg daily in patients with moderate-to-severe COPD and an increased cardiovascular risk (Covelli et al 2016). There was no significant difference in the primary endpoint, the change from baseline in wmm FEV1 (0 to 24 hr). Minor differences were noted in some secondary efficacy endpoints and in the safety profiles. Pneumonia occurred more frequently in the fluticasone furoate/vilanterol group, and 2 patients in the tiotropium group died following cardiovascular events. The duration of this trial was not long enough to allow any firm conclusions about the relative efficacy and safety of fluticasone furoate/vilanterol vs tiotropium.

In a Cochrane review that included the Covelli et al 2016 trial and 1 additional 12 week trial comparing tiotropium to fluticasone furoate/vilanterol (N = 880 across both trials), there were no differences between treatments when considering the following outcomes: mortality, COPD exacerbation, pneumonia, St. George’s respiratory questionnaire (SGRQ) score, hospital admissions, or use of rescue medication (Sliwka et al 2018).

- Several trials have evaluated the potential benefits of adding a combination ICS/LABA to tiotropium vs the use of tiotropium alone in patients with COPD. The trial generally demonstrated an improvement in FEV1 and some other lung function, symptom score, and quality-of-life endpoints (Hanania et al 2012, Lee et al 2016, Rojas-Reyes et al 2016, Welte et al 2009). Some trials (Lee et al 2016, Welte et al 2009) also demonstrated a reduction in the risk of COPD exacerbations or severe exacerbations; however, other trials and a meta-analysis have not confirmed a significant benefit for exacerbations (Aaron et al 2007, Hanania et al 2012, Kermer et al 2011, Rojas-Reyes et al 2016).

Beta2-agonist/anticholinergic combinations for COPD

Comparisons of combination beta2-agonist/anticholinergic products to bronchodilator monotherapy:

- Numerous trials have compared the combination beta2-agonist/anticholinergic products to their respective individual components as monotherapy, and in general, results have demonstrated that administration of the combination product is more effective than monotherapy for improving lung function and/or achieving control of symptoms in COPD (Beek et al 2015, Bone et al 1994, Buhl et al 2015, Decramer et al 2014, Donohue et al 2013, Dorinsky et al 1999, Friedman et al 1999, Hanania et al 2017, Mahler et al 2015, Martinez et al 2017).

- A large, randomized-controlled trial (N = 7880) of patients with COPD and a history of exacerbations did not find a difference in the rate of exacerbations between LAMA/LABA therapy with tiotropium/olodaterol vs LAMA therapy with tiotropium (relative risk [RR], 0.93; 99% CI, 0.85 to 1.02; p = 0.0498) (Calverley et al 2018).
Comparisons of combination beta\textsubscript{2}-agonist/anticholinergic products to each other or to other bronchodilator combinations

Two head-to-head trials between different LAMA/LABA combinations have been published.

- An 8-week, open-label, crossover trial compared Anoro Ellipta (umeclidinium/vilanterol) and Stiolto Respimat (tiotropium/olodaterol) in 236 patients with COPD (Feldman et al 2017). The primary endpoint, change from baseline in trough FEV\textsubscript{1}, was shown to be greater for umeclidinium/vilanterol, with a difference of 52 mL (95% CI, 28 to 77; \(p < 0.001 \)) for superiority in the intention-to-treat population. Effects on secondary endpoints were mixed, with umeclidinium/vilanterol demonstrating a small improvement in rescue medication use but no significant differences in COPD Assessment Test (CAT) scores (a health status questionnaire) or EXACT Respiratory Symptoms (E-RS) scores at most weekly assessments.

- Two 12-week, double-blind, crossover trials compared Utibron Neohaler (glycopyrrolate/indacaterol) to Anoro Ellipta (umeclidinium/vilanterol) in a total of 712 patients with COPD (Kerwin et al 2017). The primary endpoint, FEV\textsubscript{1} AUC (0 to 24 hr), was similar between treatment arms in both studies, with differences for glycopyrrolate/indacaterol vs umeclidinium/vilanterol of -11.5 mL (95% CI, -26.9 to 3.8) and -18.2 mL (95% CI, -34.2 to -2.3) in Studies 1 and 2, respectively. Although the trials failed to demonstrate noninferiority of glycopyrrolate/indacaterol to umeclidinium/vilanterol due to the noninferiority margin used in the study methodology, the differences between treatments were not considered clinically meaningful.

A 12-week, non-inferiority, randomized, double-blind, triple-dummy, parallel group study (\(N = 967 \)) compared umeclidinium/vilanterol (62.5/25 mcg once daily) to tiotropium (18 mcg once daily) plus indacaterol (150 mcg once daily) (Kalberg et al 2016). When comparing trough FEV\textsubscript{1} on day 85, umeclidinium/vilanterol demonstrated non-inferiority to combination treatment with tiotropium and indacaterol. Other measures, including rescue medication use, TDI focal scores, and SGRQ scores, were also similar between both treatment groups on day 85 (p values not provided).

A meta-analysis of 26 randomized controlled trials comparing the efficacy of umeclidinium/vilanterol, indacaterol/glycopyrrolate, formoterol plus tiotropium, salmeterol plus tiotropium, or indacaterol plus tiotropium to tiotropium alone found that umeclidinium/vilanterol was comparable to other LAMA/LABA fixed-dose combination agents with respect to trough FEV\textsubscript{1}, SGRQ scores, TDI focal scores, and need for rescue medication use (Huisman et al 2015).

Three systematic reviews/meta-analyses compared various LAMA/LABA combinations (Calzetta et al 2016, Schlueter et al 2016, Sion et al 2017). Limitations to these analyses included the fact that trials evaluated some formulations/dose regimens not available in the U.S., and comparisons between different combinations were based on indirect data.

Overall, these meta-analyses demonstrated that all LAMA/LABA combinations showed improved lung function vs monocomponents, with few differences among products across lung function and patient-reported endpoints.
The analysis by Sion et al noted that both Utibron Neohaler (glycopyrrolate/indacaterol) and Anoro Ellipta (umeclidinium/vilanterol) appeared to improve lung function to a greater extent than Siliotto Respimat (tiotropium/olodaterol) at 12 weeks, with differences in trough FEV₁ of 52 mL (95% credible interval [Crl], 18 to 86) and 38 mL (95% Crl, 13 to 63), respectively.

The Schlüeter et al meta-analysis included 27 trials (N = 30,361) including 4 LAMA/LABA fixed-dose combination agents (aclidinium/formoterol 400/12 mcg [not FDA approved for use in the U.S.], glycopyrrolate/indacaterol 110/50 mcg, tiotropium/olodaterol 5/5 mcg, and umclidinium/vilanterol 62.5/25 mcg), and showed non-significant differences in efficacy, exacerbations, and discontinuation rates (Schlueter et al 2016). Safety profiles were also similar among the products.

ICS/LABA compared to LAMA/LABA combinations for COPD

- A randomized, double-blind, 12-week trial (N = 717) compared umclidinium/vilanterol 62.5/25 mcg once daily to fluticasone propionate/salmeterol 500/50 mcg twice daily in patients with moderate to severe COPD and no exacerbations in the previous year (Singh et al 2015). It should be noted that the dose of fluticasone propionate was higher than what is recommended in the U.S. for treatment of COPD. Treatment with umclidinium/vilanterol resulted in greater improvement in lung function than fluticasone propionate/salmeterol, with a difference of 80 mL (95% CI, 46 to 113) in the wm FEV₁ (0 to 24 hr) and a difference of 90 mL (95% CI, 55 to 125) in trough FEV₁. Effects on rescue bronchodilator use, mean TDI focal score, and SGRQ total scores, and the incidence of adverse events, were similar between groups.

- Two randomized, double-blind, 12-week trials (N = 707 and N = 700; reported together) compared umclidinium/vilanterol 62.5/25 mcg daily to fluticasone propionate/salmeterol 250/50 mcg twice daily in patients with moderate to severe COPD without exacerbations in the previous year (Donohue et al 2015). These trials also demonstrated a greater improvement in lung function endpoints for umclidinium/vilanterol compared to fluticasone propionate/salmeterol, with differences in wm FEV₁ (0 to 24 hr) and trough FEV₁ ranging from 74 to 101 mL (p < 0.001 for all comparisons). Adverse event rates and effects on TDI score and SGRQ were similar between groups.

- A randomized, double-blind, 26-week trial (ILLUMINATE; N = 523) compared indacaterol/glycopyrrolate 110/50 mcg daily to fluticasone propionate/salmeterol 500/50 mcg twice daily in patients with COPD and a history of ≥ 1 exacerbation during the previous year (Vogelmeier et al 2013). The dosing regimens for indacaterol/glycopyrrolate and fluticasone propionate/salmeterol evaluated in this study are different from those available and/or recommended for COPD in the U.S. The primary endpoint, FEV₁ AUC (0 to 12 hr), was significantly higher with indacaterol/glycopyrrolate than fluticasone propionate/salmeterol, with a treatment difference of 138 mL (95% CI, 100 to 176; p < 0.0001). Benefits were also seen for indacaterol/glycopyrrolate for some secondary endpoints, including additional lung function measures, change from baseline in rescue medication use, and TDI focal score; the difference in SGRQ was not statistically significant.

- A large, randomized, double-blind, 52-week trial (FLAME; N = 3362) compared indacaterol/glycopyrrolate 110/50 mcg daily to fluticasone propionate/salmeterol 500/50 mcg twice daily in patients with COPD and a history of ≥ 1 exacerbation during the previous year (Wedzicha et al 2016). Again, these dosing regimens varied from U.S. recommendations. The primary endpoint, the annual rate of all COPD exacerbations, was 11% lower in the indacaterol/glycopyrrolate group than in the fluticasone propionate/salmeterol group (3.59 vs 4.03; rate ratio, 0.89; 95% CI, 0.83 to 0.96; p = 0.003). Lung function was also improved to a greater extent with indacaterol/glycopyrrolate, with a difference in trough FEV₁ of 62 mL between groups (p < 0.001).

- A randomized, double-blind, crossover trial (N = 229) evaluated the use of tiotropium/olodaterol 2.5/5 mcg and 5/5 mcg once daily and fluticasone propionate/salmeterol 250/50 mcg and 500/50 mcg twice daily in patients with moderate to severe COPD; each patient received each of the 4 treatments for 6 weeks separated by 3-week washout periods (Beeh et al 2016). The lower dose of each combination is the dose available/recommended for COPD in the U.S. The primary endpoint, FEV₁ AUC (0 to 12 hr), was greater for the tiotropium/olodaterol regimens (range, 295 to 317 mL) than for the fluticasone propionate/salmeterol regimens (range, 188 to 192 mL) (p < 0.0001). FEV₁ AUC (12 to 24 hr) and FEV₁ AUC (0 to 24 hr) also favored tiotropium/olodaterol. Rates of adverse events were similar among the treatments.

Triple combination for COPD

Fluticasone furoate/umeclidinium/vilanterol is the first FDA-approved “closed triple” inhaler – an inhaler containing 3 active ingredients: an ICS, a LAMA, and a LABA. FDA approval was based primarily on the coadministration of umeclidinium plus the fluticasone furoate/vilanterol combination.
• Two 12-week randomized studies (N = 619 and N = 620; published together) evaluated the efficacy and safety of double-blind treatment with umeclidinium 62.5 mcg, umeclidinium 125 mcg, or placebo when added to open-label fluticasone furoate/vilanterol 100/25 mcg (Siler et al 2015). In both studies, the primary endpoint, trough FEV1, was significantly improved with the addition of umeclidinium, with improvements ranging from 111 to 128 mL (p < 0.001 for all comparisons vs placebo). Improvement was also demonstrated on the secondary endpoint of wmdFEV1 (0 to 6 hr), with improvements ranging from 125 to 153 mL (p < 0.001 for all comparisons vs placebo). SGRQ results were inconsistent. No substantial benefit was observed with umeclidinium 125 mcg over 62.5 mcg, which is consistent with findings in the umeclidinium monotherapy studies.

• Once-daily triple therapy with fluticasone furoate/umeclidinium/vilanterol has also been compared to twice-daily budesonide/formoterol 400/12 mcg in a 24-week, double-blind, double-dummy randomized trial (FULFIL; N = 1810) (Lipson et al 2017). The formulation/dosing regimen of budesonide/formoterol in this trial is different from the formulation available in the U.S. The trial demonstrated improvements in the change from baseline in trough FEV1 (difference, 171 mL; 95% CI, 148 to 194; p < 0.001), SGRQ (difference, -2.2; 95% CI, -3.5 to -1.0; p < 0.001), and the rate of moderate/severe exacerbations (rate ratio, 0.65; 95% CI, 0.49 to 0.86; p = 0.002). Although the comparator regimen is not available in the U.S., this trial further supports the efficacy of triple inhaler therapy with fluticasone furoate/umeclidinium/vilanterol.

• Once-daily triple therapy with fluticasone furoate/umeclidinium/vilanterol was compared to fluticasone furoate/vilanterol and umeclidinium/vilanterol in a 52-week, double-blind, randomized trial among patients with COPD (IMPACT; Lipson et al 2018). The primary endpoint of moderate or severe exacerbations was significantly lower with triple therapy in comparisons both with fluticasone furoate/vilanterol (rate ratio, 0.85; 95% CI, 0.80 to 0.90) and with umeclidinium/vilanterol (rate ratio, 0.75; 95% CI, 0.70 to 0.81). The annual rate of severe exacerbation resulting in hospitalization was also significantly lower with triple therapy vs umeclidinium/vilanterol (rate ratio, 0.66; 95% CI, 0.56 to 0.78), but not vs fluticasone furoate/vilanterol. The mean change from baseline in trough FEV1 was significantly increased with triple therapy by 97 and 54 mL vs fluticasone furoate/vilanterol and umeclidinium/vilanterol, respectively. The risk of pneumonia was significantly higher with triple therapy vs umeclidinium/vilanterol (HR, 1.53; 95% CI, 1.22 to 1.92), but not vs fluticasone furoate/vilanterol. Significant improvements in SGRQ total scores also occurred with triple therapy vs fluticasone furoate/vilanterol (mean difference, -1.8; 95% CI, -2.4 to -1.1) and vs umeclidinium/vilanterol (mean difference, -1.8; 95% CI, -2.6 to -1.0).

CLINICAL GUIDELINES

Asthma

The National Asthma Education and Prevention Program (NAEPP) guideline from the NHLBI states that the initial treatment of asthma should correspond to the appropriate asthma severity category, and it provides a stepwise approach to asthma management. Long-term control medications such as ICS, long-acting bronchodilators, leukotriene modifiers, cromolyn, theophylline, and immunomodulators should be taken daily on a long-term basis to achieve and maintain control of persistent asthma. ICS are the most potent and consistently effective long-term asthma control modifiers, cromolyn, theophylline, and immunomodulators should be taken daily on a long-term basis to achieve and maintain control of persistent asthma. ICS are the most potent and consistently effective long-term asthma control medication. Quick-relief medications such as SABAs and anticholinergics are used to provide prompt relief of bronchoconstriction and accompanying acute symptoms such as cough, chest tightness, and wheezing. Systemic corticosteroids are important in the treatment of moderate or severe exacerbations because these medications prevent progression of the exacerbation, speed recovery, and prevent relapses (NHLBI 2007).

- LABAs are used in combination with ICS for long-term control and prevention of symptoms in moderate or severe persistent asthma.
- Of the adjunctive treatments available, a LABA is the preferred option to combine with an ICS in patients 12 years of age and older. This combination is also an option in selected patients 5 to 12 years of age.

The Global Initiative for Asthma (GINA) guideline also provides a stepwise approach to asthma management. It recommends an ICS as a preferred controller medication choice, with an increased ICS dose and/or addition of a LABA for increasing symptom severity (higher steps). At the highest step, it is recommended that the patient be referred for add-on treatment (eg, tiotropium, omalizumab, mepolizumab) (GINA 2018).

- The available asthma guidelines are generally similar; however, one difference among them is the recommendation of ICS/formoterol as both maintenance and rescue therapy by the GINA guidelines. The NHLBI do not recommend LABA medications for the management of acute asthma symptoms or exacerbations (GINA 2018, NHLBI 2007).
- A meta-analysis of 16 randomized controlled trials evaluating the use of a LABA/ICS as single maintenance and reliever therapy found that it was associated with a significant reduction in the risk of asthma exacerbations compared
with controller therapy with the same dose of ICS and LABA (RR, 0.68; 95% CI, 0.58 to 0.80) (Sobieraj et al 2018). Of the 16 trials, 15 studied budesonide/formoterol in a dry powder inhaler. Results were similar in comparisons with doses of ICS and LABA controller therapy that were higher than the combined LABA/ICS, and in comparison with ICS controller therapy only.

COPD

- The 2019 GOLD guidelines state that the management strategy for stable COPD should be predominantly based on an assessment of the patient’s symptoms and risk of exacerbations; the risk of exacerbations is based on a patient’s exacerbation history. Key recommendations from the GOLD guidelines are as follows (GOLD 2019):
 - Inhaled bronchodilators are central to symptom management in COPD and commonly given on a regular basis to prevent or reduce symptoms.
 - Inhaled bronchodilators are recommended over oral bronchodilators.
 - LAMAs and LABAs significantly improve lung function, dyspnea, and health status, and reduce exacerbation rates. LAMAs and LABAs are preferred over short-acting agents except for patients with only occasional dyspnea. LAMAs have a greater effect on exacerbation reduction compared to LABAs and decrease hospitalizations.
 - Patients may be started on single long-acting bronchodilator therapy or dual long-acting bronchodilator therapy. In patients with persistent dyspnea on 1 bronchodilator, treatment should be escalated to 2 bronchodilators.
 - Combination treatment with a LABA and LAMA:
 - Reduces exacerbations compared to monotherapy or ICS/LABA.
 - Increases FEV₁ and reduces symptoms compared to monotherapy.
 - Long-term monotherapy with ICSs is not recommended. Long-term treatment with ICSs may be considered in association with LABAs for patients with a history of exacerbations despite treatment with long-acting bronchodilators.
 - Triple inhaled therapy of LAMA/LABA/ICS improves lung function, symptoms, and health status and reduces exacerbations compared to ICS/LABA or LAMA monotherapy.
 - Treatment recommendations are given for patients with COPD based on their GOLD patient group (see Table 3 below).

- Group A: Patients should be offered bronchodilator treatment (short- or long-acting), based on its effect on breathlessness. This should be continued if symptomatic benefit is documented.
- Group B: Initial therapy should consist of a long-acting bronchodilator (LAMA or LABA). For patients with persistent breathlessness on monotherapy, use of 2 bronchodilators is recommended (LAMA + LABA). For patients with severe breathlessness, initial therapy with 2 bronchodilators may be considered. If the addition of a second bronchodilator does not improve symptoms, it is suggested that treatment could be stepped down to a single bronchodilator, switching to another device or molecules can also be considered.
- Group C: Initial therapy should be a LAMA. Patients with persistent exacerbations may benefit from adding a second long-acting bronchodilator (LAMA + LABA, preferred) or using an ICS + LABA. For patients who have a history and/or findings suggestive of asthma-COPD overlap or blood eosinophil count ≥ 300 cells/µL, ICS + LABA is preferred.
- Group D: In general, it is recommended to start therapy with a LAMA. For patients with more severe symptoms, especially dyspnea and/or exercise limitation, LAMA/LABA may be considered for initial treatment. In some patients, initial therapy with an ICS + LABA may be the first choice; these patients may have a history and/or findings suggestive of asthma-COPD overlap or blood eosinophil count ≥ 300 cells/µL. In patients who develop further exacerbations on LAMA + LABA therapy, alternative pathways include escalation to a LAMA + LABA + ICS (preferred) or a switch to an ICS + LABA. If patients treated with a LAMA + LABA + ICS still have exacerbations, options for selected patients may include addition of roflumilast, addition of a macrolide, or stopping the ICS.

Table 3. Assessment of Symptoms and Risk of Exacerbations to Determine GOLD Patient Group

<table>
<thead>
<tr>
<th>Moderate/Severe Exacerbation history</th>
<th>Symptoms</th>
<th>Symptom description</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 2 (or 1 leading to hospital admission)</td>
<td>C</td>
<td>mMRC 0 to 1 CAT <10</td>
</tr>
<tr>
<td>0 or 1 (not leading to hospital admission)</td>
<td>A</td>
<td>mMRC ≥ 2 CAT ≥10</td>
</tr>
</tbody>
</table>

This information is considered confidential and proprietary to OptumRx. It is intended for internal use only and should be disseminated only to authorized recipients. The contents of the therapeutic class overviews on this website ("Content") are for informational purposes only. The Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Patients should always seek the advice of a physician or other qualified health provider with any questions regarding a medical condition. Clinicians should refer to the full prescribing information and published resources when making medical decisions.
Guidelines from the American College of Chest Physicians and the Canadian Thoracic Society for prevention of acute exacerbations of COPD state that LAMA/LABA combinations are effective in reducing acute COPD exacerbations, but do not state that this combination is superior to LAMA monotherapy (Criner et al 2015).

SAFETY SUMMARY

Beta₂-agonist/corticosteroid combinations
- Beta₂-agonist/ICS combinations are generally contraindicated for the primary treatment of status asthmaticus or other acute episodes of asthma/COPD where intensive measures are required.
- Advair Diskus, AirDuo RespiClick, and Breo Ellipta are contraindicated in patients with a severe hypersensitivity to milk proteins.
- Previously, ICS/LABA combinations had a boxed warning about an increased risk of asthma-related death, which had been observed with the LABA salmeterol. However, the boxed warning was removed from the prescribing information for ICS/LABA combinations in December 2017 based on an FDA review of 4 large clinical safety trials, which demonstrated that these combinations do not result in a significantly increased risk of asthma-related death, hospitalizations, or the need for intubation compared to ICS alone. There is still a warning/precaution in the prescribing information of ICS/LABA combinations related to the increased risk of asthma-related death with LABA monotherapy. A description of the clinical safety trials with ICS/LABA combinations has been added to the prescribing information for these products (FDA 2017).
- Other key warnings and precautions include:
 - Significant cardiovascular effects and fatalities with excessive use of beta₂-agonists
 - Cardiovascular and/or central nervous system effects from beta-adrenergic stimulation (seizures, angina, hypertension or hypotension, tachycardia, arrhythmias, nervousness, headache, tremor, palpitation, nausea, dizziness, fatigue, malaise, and insomnia)
 - Paradoxical bronchospasm
 - Hypercorticism and adrenal suppression due to systemic absorption of the corticosteroid
 - The need for caution when transferring patients from systemic corticosteroid therapy (deaths due to adrenal insufficiency have occurred)
 - Lower respiratory tract infections/pneumonia
 - Local infections of the mouth and pharynx with Candida albicans
 - Reduced growth velocity in pediatric patients
 - The potential for drug interactions with strong CYP3A4 inhibitors; concomitant use is not recommended due to the potential for increased systemic effects
 - The potential for developing glaucoma, increased intraocular pressure, blurred vision, central serous chorioretinopathy, or cataracts
 - Immunosuppression
 - Hypersensitivity
 - Reduction in bone mineral density
- It is also important to note that ICS/LABA combinations should not be initiated in the setting of disease deterioration or potentially life-threatening episodes.
- Commonly reported adverse events (≥ 5% for at least 1 medication in the class) include oral candidiasis, hoarseness/dysphonia, nasopharyngitis/pharyngitis, pharyngolaryngeal/oropharyngeal pain, sinusitis, upper respiratory tract infection, upper respiratory tract inflammation, bronchitis, cough, headache, gastrointestinal discomfort, and nausea/vomiting.

Beta₂-agonist/anticholinergic combinations
- Both albuterol/ipratropium combination products are contraindicated in patients with hypersensitivity to atropine or its derivatives. Anoro Ellipta is contraindicated in patients with hypersensitivity to any component of the product, as well as in patients with severe hypersensitivity to milk proteins. Bevespi Aerosphere, Stioltio Respimat, and Utibron Neohaler are all contraindicated in patients with asthma without use of a long-term asthma control medication (and are not indicated for the treatment of asthma).
• There are no boxed warnings for the albuterol/ipratropium combination products. Anoro Ellipta, Bevespi Aerosphere, Stiolto Respimat and Utibron Neohaler have boxed warnings stating that LABA increase the risk of asthma-related death. Data from a large placebo-controlled U.S. trial that compared the safety of another LABA (salmeterol) with placebo added to usual asthma therapy showed an increase in asthma-related deaths in subjects receiving salmeterol. This finding with salmeterol is considered a class effect of all LABA, including formoterol (an active ingredient in Bevespi Aerosphere), indacaterol (an active ingredient in Utibron Neohaler), vilanterol (an active ingredient in Anoro Ellipta), and olodaterol (an active ingredient in Stiolto Respimat). The safety and efficacy of Anoro Ellipta, Bevespi Aerosphere, Stiolto Respimat, and Utibron Neohaler in patients with asthma have not been established, and these products are not indicated for the treatment of asthma.

• Warnings and precautions are very similar among products, and include the following:
 ○ Paradoxical bronchospasm: May produce paradoxical bronchospasm, which can be life-threatening. If it occurs, the product should be discontinued and alternative therapy instituted.
 ○ Cardiovascular effect: Bet2-agonists can produce a significant cardiovascular effect in some patients, as measured by pulse rate, blood pressure, and/or symptoms. If these symptoms occur, the product may need to be discontinued. In addition, electrocardiogram (ECG) changes may occur. These products should be used with caution in patients with cardiovascular disorders, especially coronary insufficiency, cardiac arrhythmias, and hypertension.
 ○ Ocular effects: Ipratropium and other anticholinergic agents may increase intraocular pressure, which may precipitate or worsen narrow-angle glaucoma. They should be used with caution in patients with narrow-angle glaucoma. In addition, patients should avoid spraying product into eyes, as this can cause eye pain and visual symptoms.
 ○ Urinary retention: Ipratropium and other anticholinergic agents may cause urinary retention. Caution is advised when administering to patients with prostatic hyperplasia or bladder-neck obstruction.
 ○ The recommended dose should not be exceeded: Fatalities have been reported in association with excessive use of inhaled sympathomimetic drugs in patients with asthma.
 ○ Hypersensitivity reactions: Urticaria, angioedema, rash, pruritus, bronchospasm, laryngospasm, oropharyngeal edema, and anaphylaxis may occur. If such a reaction occurs, therapy should be discontinued and alternative treatment considered.
 ○ Coexisting conditions: Due to the beta2-agonist component, caution is advised in patients with convulsive disorders, hyperthyroidism, or diabetes mellitus, and in patients who are unusually responsive to sympathomimetic amines.
 ○ Hypokalemia: β-agonists may produce significant hypokalemia in some patients, which has the potential to produce adverse cardiovascular effects. The decrease in serum potassium is usually transient, not requiring supplementation.
 ○ Drug interactions with strong CYP3A4 inhibitors; increased cardiovascular effects may occur (Anoro Ellipta only).
 ○ Reports of anaphylactic reactions in patients with severe milk protein allergy (Anoro Ellipta only).
 ○ Deterioration of disease and acute episodes; drug has not been studied in this setting and is not to relieve acute symptoms (Anoro Ellipta and Stiolto Respimat only).
 ○ Adverse reactions are similar among products and include back pain, bronchitis, upper respiratory infection, lung disease, headache, dyspnea, nasopharyngitis/pharyngitis, and cough.
 ○ In a 12-week trial comparing Combivent Respimat to Combivent inhalation aerosol, rates of adverse reactions were very similar between groups. In a 48-week safety trial, most adverse reactions were similar in type and rate between treatment groups; however, cough occurred more frequently in patients enrolled in the Combivent Respimat group (7%) than the Combivent inhalation aerosol group (2.6%).
 ○ The choice of a specific LAMA/LABA fixed-dose combination product is not based on any difference in the safety profile (Matera et al 2016).

Triple combination (beta2-agonist/anticholinergic/corticosteroid)

• Trelegy Ellipta is contraindicated in patients with severe hypersensitivity to milk proteins or any ingredients in the formulation.

• Similar to other combination agents for COPD (and/or asthma), Trelegy Ellipta has a number of additional warnings and precautions; these include:
 ○ Increased risk of asthma-related death
 ○ Not indicated for treatment of asthma
 ○ Not initiating in patients with rapidly deteriorating COPD
 ○ Avoiding excessing use
 ○ Local effects of ICS
○ Risk of pneumonia
○ Immunosuppression
○ Using caution when transferring patients from systemic corticosteroid therapy
○ Hypercorticism and adrenal suppression
○ Drug interactions with strong CYP3A4 inhibitors
○ Paradoxical bronchospasm
○ Hypersensitivity reactions
○ Cardiovascular effects
○ Reduction in bone mineral density
○ Glaucoma and cataracts
○ Urinary retention
○ Using caution in patients with certain coexisting conditions such as convulsive disorders or thyrotoxicosis
○ Hypokalemia and hyperglycemia

• The most common adverse reactions with Trelegy Ellipta include headache, back pain, dysgeusia, diarrhea, cough, oropharyngeal pain, and gastroenteritis.

DOSING AND ADMINISTRATION

<table>
<thead>
<tr>
<th>Drug</th>
<th>Available Formulations</th>
<th>Route</th>
<th>Usual Recommended Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta2-agonist & corticosteroid combinations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advair Diskus (fluticasone propionate/salmeterol)</td>
<td>Inhalation powder</td>
<td>Inhalation</td>
<td>2 times daily</td>
</tr>
<tr>
<td>Advair HFA (fluticasone propionate/salmeterol)</td>
<td>Aerosol inhaler</td>
<td>Inhalation</td>
<td>2 times daily</td>
</tr>
<tr>
<td>AirDuo RespClick (fluticasone propionate/salmeterol)</td>
<td>Inhalation powder</td>
<td>Inhalation</td>
<td>2 times daily</td>
</tr>
<tr>
<td>Breo Ellipta (fluticasone furoate/vilanterol)</td>
<td>Inhalation powder</td>
<td>Inhalation</td>
<td>Once daily</td>
</tr>
<tr>
<td>Dulera (mometasone furoate/formoterol fumarate dihydrate)</td>
<td>Aerosol inhaler</td>
<td>Inhalation</td>
<td>2 times daily</td>
</tr>
<tr>
<td>Symbicort (budesonide/formoterol fumarate dihydrate)</td>
<td>Aerosol inhaler</td>
<td>Inhalation</td>
<td>2 times daily</td>
</tr>
<tr>
<td>Beta2-agonist & anticholinergic combinations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anoro Ellipta (umeclidinium/vilanterol)</td>
<td>Inhalation powder</td>
<td>Inhalation</td>
<td>Once daily</td>
</tr>
<tr>
<td>Bevespi Aerosphere (glycopyrrolate/formoterol fumarate)</td>
<td>Inhalation spray</td>
<td>Inhalation</td>
<td>2 times daily</td>
</tr>
<tr>
<td>Combivent Respimat (ipratropium bromide/albuterol)</td>
<td>Inhalation spray</td>
<td>Inhalation</td>
<td>4 times daily</td>
</tr>
<tr>
<td>ipratropium bromide/albuterol</td>
<td>Nebulizer solution</td>
<td>Inhalation</td>
<td>4 times daily</td>
</tr>
<tr>
<td>Stiolto Respimat (tiotropium bromide/olodaterol)</td>
<td>Inhalation spray</td>
<td>Inhalation</td>
<td>Once daily</td>
</tr>
<tr>
<td>Utibron Neohaler (indacaterol/glycopyrrolate)</td>
<td>Inhalation powder</td>
<td>Inhalation</td>
<td>2 times daily</td>
</tr>
<tr>
<td>Triple combination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trelegy Ellipta (fluticasone furoate/umeclidinium/vilanterol)</td>
<td>Inhalation powder</td>
<td>Inhalation</td>
<td>Once daily</td>
</tr>
</tbody>
</table>

See the current prescribing information for full details.

CONCLUSION

• Respiratory medications, including bronchodilators and corticosteroids, are a mainstay of treatment for asthma and COPD, and a large amount of clinical evidence supports the safety and efficacy of combination beta2-agonist agents for these indications.
 ○ Clinical trials have demonstrated that the combination products superior efficacy compared with the individual separate components when given as monotherapy for the treatment of both asthma and COPD. The combination products are generally well tolerated.
• Several single-ingredient inhalers containing beta2-agonists, ICS, or anticholinergics are also available. Beta2-agonist combinations offer improved convenience over the use of multiple separate inhalers.
 ○ Trelegy Ellipta is the first fixed-dose combination inhaler combining a LAMA, a LABA, and an ICS, and provides an alternative to the use of multiple inhalers for patients with COPD in whom triple therapy is indicated.
GINA guidelines support the use of combination ICS/LABA products for long-term control and prevention of symptoms in patients with asthma who do not achieve sufficient symptom control with ICS monotherapy.

- Single-agent LABA therapy should not be used for asthma management due to the increased risk of asthma-related death, as well as asthma-related hospitalization in pediatric and adolescent patients. However, recent drug safety information from the FDA states that no significantly increased risk of serious asthma outcomes has been seen with the use of ICS/LABA combinations, and boxed warnings about this potential risk have been removed from the prescribing information for the ICS/LABA combinations.

- An advantage of the ICS/LABA combinations is that their use ensures that patients are not using a LABA without a concomitant ICS.

GOLD guidelines recommend the use of combination ICS/LABA products as an option for some patients at higher risk of exacerbations, a history and/or findings suggestive of asthma-COPD overlap, or blood eosinophil count > 300 cells/μL; however, the use of 1 or more bronchodilator without an ICS is recommended as first-line treatment for most COPD patients.

- A LAMA is recommended as first-line treatment in most patients with COPD, with the exception of low-risk patients with milder symptoms, or patients with more severe symptoms.

- None of the current asthma or COPD treatment guidelines recommend the use of one specific combination product over another.

- Administration instructions and inhalation devices vary among products and should be considered in product selection.

REFERENCES

- Advair HFA [package insert], Research Triangle Park, NC: GlaxoSmithKline; December 2017.
- AirDuo RespiClick [package insert], Frazer, PA: Teva Respiratory, LLC.; March 2018.

• Breo Ellipta [package insert], Research Triangle Park, NC: GlaxoSmithKline; December 2017.

• Combivent Respimat [package insert], Ridgefield, CT: Boehringer Ingelheim; June 2016.

• Dulera [package insert], Whitehouse Station, NJ: Merck Sharp & Dohme; July 2018.

Data as of November 19, 2018 KS-USS-U/JAL5. This information is considered confidential and proprietary to OptumRx. It is intended for internal use only and should be disseminated only to authorized recipients. The contents of the therapeutic class overview on this website ("Content") are for informational purposes only. The Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Patients should always seek the advice of a physician or other qualified health provider with any questions regarding a medical condition. Clinicians should refer to the full prescribing information and published resources when making medical decisions.
The contents of the therapeutic class overviews on this website (“Content”) are for informational purposes only. The Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Patients should always seek the advice of a physician or other qualified health provider with any questions regarding a medical condition. Clinicians should refer to the full prescribing information and published resources when making medical decisions.

Rojas-Reyes MX, García Morales OM, Dennis RJ, Karner C. Combination inhaled steroid and long-acting beta2-agonist inhaler therapy in asthma. *Ann Allergy Asthma Immunol.* 2001;87:328-333.

Stilto Respimat [package insert], Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc.; October 2018.

Symbicort [package insert], Wilmington, DE: AstraZeneca; December 2017.

Trelegy Ellipta [package insert], Research Triangle Park, NC: GlaxoSmithKline; April 2018.

Publication Date: January 2, 2019