Therapeutic Class Overview
Sodium-glucose co-transporter 2 (SGLT2) Inhibitors

Therapeutic Class

- **Overview/Summary:** Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a class of oral antidiabetic agents approved by the Food and Drug Association (FDA) as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes.\(^1\text{-}^10\) The kidneys play a pivotal role in controlling plasma glucose concentration; reabsorbing nearly all plasma glucose in the proximal tubules and preventing glucose excretion in patients with normal glucose-tolerance. Approximately 90% of the filtered renal glucose is done in the early convoluted segment of the proximal tubule and is facilitated by the SGLT2 transporter. The remaining 10% of filtered glucose is reabsorbed in the distal straight segment of the proximal tube by the SGLT1 transporter. In diabetic patients, the SGLT transporter system is often overwhelmed and unable to reabsorb all filtered plasma glucose due to hyperglycemic conditions. Once this threshold capacity is reached and surpassed, excess glucose that is not reabsorbed is excreted into the urine. In addition, a chronic elevated plasma glucose concentration provides the stimulus that ultimately leads to increased SGLT2 expression by the renal proximal tubular cells, resulting in an undesirable increase in renal capacity and threshold to reabsorb filtered glucose in both type 1 and type 2 diabetic patients.\(^1\text{-}^2\) SGLT2 inhibitors improve glycemic control by producing glucosuria. This is accomplished by inhibiting SGLT2 and increasing urinary glucose excretion. The net effect is an increase excretion of glucose from the body and normalizing plasma glucose levels. At this time, it is unknown if this mechanism of action serves to reduce the kidney’s threshold capacity to reabsorb glucose, thus causing glucose excretion at lower plasma concentrations, or if the mechanism of action serves to prevent reabsorption of glucose load at all plasma glucose concentrations. SGLT2 inhibitors also have beneficial nonglycemic effects, such as weight loss observed during clinical trials and small decreases in systolic and diastolic blood pressure.\(^1\text{-}^2\)

<table>
<thead>
<tr>
<th>Generic (Trade Name)</th>
<th>Food and Drug Administration Approved Indications</th>
<th>Dosage Form/Strength</th>
<th>Generic Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Agent Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canagliflozin (Invokana(^6))</td>
<td>Adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes</td>
<td>Tablet: 100 mg 300 mg</td>
<td>-</td>
</tr>
<tr>
<td>Dapagliflozin (Farxiga(^6))</td>
<td>Adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes</td>
<td>Tablet: 5 mg 10 mg</td>
<td>-</td>
</tr>
<tr>
<td>Empagliflozin (Jardiance(^6))</td>
<td>Adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes</td>
<td>Tablet: 10 mg 25 mg</td>
<td>-</td>
</tr>
<tr>
<td>Combination Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canagliflozin/metformin (Invokamet(^6), Invokamet XR(^6))</td>
<td>Adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes*</td>
<td>Tablet: 50/500 mg 50/1,000 mg 150/500 mg 150/1,000 mg Sustained-Release Tablet: 50/500 mg 50/1,000 mg 150/500 mg 150/1,000 mg</td>
<td>-</td>
</tr>
</tbody>
</table>
Dapagliflozin/metformin ER (Xigduo XR®)
Adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes
Tablet: 5/500 mg 5/1000 mg 10/500 mg 10/1000 mg

Empagliflozin/linagliptin (Glyxambi®)
Adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes
Tablet: 10 mg/5 mg 25 mg/5 mg

Empagliflozin/metformin (Synjardy®)
Adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes
Tablet: 5/500 mg 5/1000 mg 12.5/500 mg 12.5/1000 mg

ER = extended-release
*For patients who are not adequately controlled on a regimen containing metformin or canagliflozin or in patients already being treated with both canagliflozin and metformin.
†When treatment with both dapagliflozin and metformin is appropriate.
‡When treatment with both empagliflozin and linagliptin is appropriate.
§When treatment with both empagliflozin and metformin is appropriate.

Evidence-based Medicine
- Each agent has been studied as monotherapy and dual and triple therapy compared to placebo and active controls and combinations of placebo and active controls.
- As monotherapy, patients randomized to canagliflozin 100 or 300 mg daily compared to patients randomized to placebo had a statistically significant improvement in HbA1c. Both doses also resulted in a greater proportion of patients achieving an HbA1c <7.0%, significant reductions in FPG and post prandial glucose (PPG), and in percent body weight reduction compared to placebo. There were also small decreases from baseline in systolic blood pressure relative to placebo (P values not reported).11
- As monotherapy in treatment-naïve patients, dapagliflozin was evaluated in two placebo-controlled trials. The first trial included 274 patients randomized to treatment with 2.5, 5 and 10 mg or placebo. At week 24, treatment with dapagliflozin 5 and 10 mg resulted in significant improvements in HbA1c compared to placebo (-0.6, -0.8, -0.9 vs -0.2%, respectively; P<0.05 for 5 and 10 mg comparisons). Change in FPG (-24.1 and -28.8 vs -4.1 mg/dL, respectively) from baseline was also significantly greater in the 5 and 10 mg groups compared to placebo (P<0.05 for both comparisons).13
- There have been no clinical efficacy studies conducted with Xigduo XR® (dapagliflozin/metformin) combination tablets. FDA-approval of dapagliflozin/metformin ER was based on previous studies conducted with the bioequivalent single-entity agents.8 Combination therapy with metformin extended-release in patients who were treatment-naïve led to significantly greater reductions in HbA1c compared to either monotherapy (dapagliflozin or metformin) in the first study (-2.0 vs -1.2 and -1.4%, respectively; P<0.0001) and second study (-2.0 vs -1.5 and -1.4%, respectively; P<0.0001). In the second study, treatment with 10 mg strength (as monotherapy) was also non-inferior to metformin (as monotherapy) for reduction of HbA1c.15
- The safety and efficacy of empagliflozin monotherapy was evaluated in a double-blind, placebo-controlled study of patients with type 2 DM (N=986). At week 24, empagliflozin 10 mg or 25 mg daily provided statistically significant reductions in HbA1c (-0.7% and -0.8% vs. 0.1%, respectively; P<0.0001 for both comparisons), FPG (-19 mg/dL and -25 mg/dL vs. 12 mg/dL, respectively; P values not reported) and body weight (-2.8 kg and -3.2 kg vs. -0.4 kg, respectively; P values not reported) compared with placebo.16
- There have been no clinical efficacy studies conducted with empagliflozin/metformin combination tablets. FDA-approval of empagliflozin/metformin ER was based on previous studies conducted with the bioequivalent single-entity agents.10 The safety and efficacy of empagliflozin added to metformin was evaluated in a double-blind, placebo-controlled study of patients with type 2 DM inadequately controlled on at least 1,500 mg of metformin per day (N=637). At week 24, empagliflozin 10 mg or 25 mg daily provided statistically significant reductions in HbA1c (-0.7% and -0.8% vs. 0.1%, respectively; P<0.0001 for both comparisons), FPG (-20 mg/dL and -22 mg/dL vs. 6 mg/dL, respectively; P values
not reported) and body weight (-2.5 kg and -2.9 kg vs. -0.5 kg, respectively; P<0.001 for both comparisons) compared with placebo.25 In addition, the safety and efficacy of empagliflozin was evaluated in an active-control study versus glimepiride (in combination with metformin). The study was a double-blind, active-controlled, non-inferiority design of patients with type 2 DM inadequately controlled on metformin monotherapy (N=1,545). At week 52, empagliflozin 25 mg daily meet the non-inferiority criteria for lowering HbA\textsubscript{1c} compared to glimepiride (-0.7\% vs. -0.7\%). There was a greater reduction in FPG and body weight with empagliflozin 25 mg compared to glimepiride; however the significance was not reported (-19 mg/dL vs. -9 mg/dL and -3.9 kg vs. 2 kg; P values not reported).26

- The safety and efficacy of empagliflozin added to linagliptin was evaluated in a 52 week double-blind, active-control, randomized trial. Change from baseline in HbA\textsubscript{1c} at week 24 was significantly improved in the combination groups compared with the individual component groups (P<0.001).33 When started as initial therapy, empagliflozin/linagliptin reduced HbA\textsubscript{1c} from baseline significantly greater when compared with individual linagliptin and empagliflozin 10 mg. Empagliflozin 25 mg/linagliptin 5 mg, however, did not show a statistically significant difference compared with empagliflozin alone (P=0.179).34
- Similar results were observed when comparing sodium glucose co-transport 2 agents in combination for the treatment of diabetes mellitus.18-32

Key Points within the Medication Class

- **According to Current Clinical Guidelines:**35-42
 - Metformin remains the cornerstone of most antidiabetic treatment regimens.
 - Patients with high glycosylated hemoglobin (HbA\textsubscript{1c}) will likely require combination or triple therapy in order to achieve glycemic goals.
 - Uniform recommendations on the best agent to be combined with metformin cannot be made; therefore, advantages and disadvantages of specific antidiabetic agents for each patient should be considered.
 - The role of sodium-glucose co-transporter 2 (SGLT2) inhibitors are addressed in several available treatment guidelines and are recommended as a potential alternative to metformin in patients who cannot receive that agent or as a part of two- or three-drug regimens in combination with other antidiabetic agents in patients not achieving glycemic goals.36,39-40

- **Other Key Facts:**
 - Canagliflozin is formulated with metformin in a single tablet (Invokamet®). Empagliflozin is formulated with linagliptin in a single tablet (Glyxambi®) and with metformin in a single tablet (Synjardy®). Canagliflozin and dapagliflozin is formulated with metformin as a single extended-release tablet (Invokamet XR®, Xigduo XR®).6-10
 - All products are dosed once daily, with the exception of canagliflozin/metformin and empagliflozin/metformin immediate-release tablets, which are dosed twice daily.3-10
 - Other effects observed in trials include weight loss and small decreases in systolic and diastolic blood pressure.
 - Common adverse side effects associated with SGLT2 inhibitor use included increased incidence of female genital mycotic infections, urinary tract infection, and increased urination.

References

