New Drug Review

Generic Name: mipomersen Trade Name: Kynamro[®] Formulation: 200 mg injection Manufacturer: Genzyme Corporation FDA Approval Date: January 29, 2013

Overview/Summary

Kynamro[®] (mipomersen) is an oligonucleotide inhibitor of apolipoprotein B (ApoB)-100 synthesis that is Food and Drug Administration-approved as an adjunct to lipid-lowering medications and diet to reduce low density lipoprotein cholesterol, ApoB, total cholesterol, and non-high density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia (HoFH).¹ This agent is an antisense oligonucleotide targeted to human messenger ribonucleic acid (mRNA) for ApoB-100. Hybridization to the cognate mRNA results in inhibition of translation of the Apo B-100 protein and ultimately decreased formation of low density lipoprotein and very low density lipoprotein.¹

Familial hypercholesterolemia is a genetically modulated clinical syndrome in which the phenotype is characterized by a high low density lipoprotein cholesterol level from birth and early onset coronary heart disease (including the absence of other risk factors). Established causes include: low density lipoprotein receptor mutations (most common), gain-of-function PCSK9 mutations (less than five percent of cases in most clinics) and familial defective ApoB (less than five percent of cases). The disorder is inherited with a gene dosing effect, in which homozygotes are more adversely affected than heterozygotes. The incidence of HoFH is rare (1 in 250,000 births) unless there is co-sanguineous union in a family with heterozygous familial hypercholesterolemia.² Treatment guidelines support the use of high-dose statins, low density lipoprotein apheresis and other cholesterol lowering agents (e.g., ezetimibe), often as part of combination regimens to reach cholesterol goals.²⁻¹³ In refractory cases, liver transplant may be therapeutic options.

The safety and efficacy of mipomersen has not been established in patients with hypercholesterolemia who do not have HoFH. In addition, the effect of this agent on cardiovascular morbidity and mortality has not been established. Furthermore, the use of mipomersen as an adjunctive treatment to low density lipoprotein apheresis is not recommended. The prescribing information for mipomersen includes a Black Box Warning regarding the risk of elevations in transaminases, increases in hepatic fat content and risk of hepatotoxicity. As a result, mipomersen is only available through a restricted distribution program under a risk evaluation and mitigation strategy.¹

Pharmacokinetics

Table 1. Pharmacokinetics¹

Generic	Bioavailability	Absorption	Renal Excretion	Active	Serum Half-
Name	(%)	(%)	(%)	Metabolites	Life (hours)
Mipomersen	54 to 78	Not reported	4	None	2 to 5 hours

Clinical Trials

The safety and efficacy of Kynamro[®] (mipomersen) as an adjunct to lipid-lowering medications in individuals with homozygous familial hypercholesterolemia (HoFH) were evaluated in a multinational, randomized, placebo-controlled, 26-week trial (N=51). The primary efficacy endpoint was the percent change from baseline to 28 weeks in low density lipoprotein cholesterol (LDL-C). At 28 weeks, there was a significantly greater reduction from baseline with mipomersen compared to placebo with regard to LDL (-25 vs -3%; P=0.0003), apolipoprotein B (-27 vs -3%; P<0.0001), total cholesterol (-21 vs -2%; P<0.05), non-high density lipoprotein-cholesterol (HDL-C) (-25 vs -3%; P=0.0002), triglycerides (-18 vs 1%; P=0.013) and HDL-C (15 vs 4%; P<0.001). Despite the significant mean decrease from baseline in LDL-C

Page 1 of 11 Copyright 2013 • Review Completed on 05/20/2013

in the mipomersen arm, there was wide inter-patient variability ranging from an increase of 2% to an 82% decrease.^{1,14}

Page 2 of 11 Copyright 2013 • Review Completed on 05/20/2013

Table 2. Clinical Trials

Study and Drug Regimen	Study Design and Demographics	Sample Size and Study Duration	End Points	Results
Raal et al ¹⁴	DB, MC, PC,	N=51	Primary:	Primary:
	PG		Percent	At week-28, there was a significantly greater improvement from baseline in LDL-C
Mipomersen 200 mg		26 weeks	change from	for patients treated with mipomersen compared to patients treated with placebo (-
SC weekly	Patients ≥12		baseline in	25 vs -3%; <i>P</i> =0.0003).
	years of age		LDL-C	
vs	with genetically			Secondary:
	or clinically		Secondary:	At week-28, there was a significantly greater improvement from baseline in ApoB
placebo	determined		Percent	for patients treated with mipomersen compared to patients receiving placebo (-27
	HoFH with a		change from	vs -3%; <i>P</i> <0.0001), TC (-21 vs -2%; <i>P</i> <0.05), non-HDL-C (-25 vs -3%; <i>P</i> =0.0002),
Patients were	fasting LDL-C		baseline in	triglycerides (-18 vs 1%; <i>P</i> =0.013) and HDL-C (15 vs 4%; <i>P</i> <0.001).
maintained on	>3.5 mmol/L,		ApoB, total	
maximum tolerated	triglycerides <4		cholesterol	The most common adverse event was injection-site reaction, which was three-
prior lipid lowering	mmol/L and		and non-HDL-	times more common in the mipomersen group than in the placebo group. Three
drugs (high-dose	bodyweight >40		C from	serious adverse events were reported. One patient in the placebo group had
statins, cholesterol	kg		baseline and	nephrolithiasis. In the mipomersen group, one patient had an acute coronary
absorption inhibitors,			safety	syndrome and one fractured an ankle. None of these adverse events was
bile acid sequestrants			evaluations	considered to be related to the study drug.
or nicotinic acid)				
throughout the study.				noite ling metain chalacteral. USEU, han an uncer familial human halacteralamia. LDL O, laur

Drug regimen and study abbreviations: ApoB=apolipoprotein B, DB=double blind, HDL-C=high density lipoprotein cholesterol, HoFH=homozygous familial hypercholesterolemia, LDL-C=low density lipoprotein cholesterol, MC=multicenter, PC=placebo controlled, PG=parallel group, SC=subcutaneous, TC=total cholesterol

Special Populations

Table 3.	Special	Popula	tions ¹

Population	Precaution
Elderly	In pooled clinical trials including elderly patients (without homozygous familial hypercholesterolemia), mipomersen was associated with a higher rate of hypertension and peripheral edema compared to placebo-treated patients.
Renal Dysfunction	Safety in renal dysfunction has not been established. This agent is not recommended in patients with severe renal impairment, clinically significant proteinuria or in those on dialysis.
Hepatic Dysfunction	Mipomersen is contraindicated in patients with clinically significant hepatic dysfunction, which may include persistent elevations of transaminases.
Pregnancy/Nursing	Category: B Percent excretion through breast milk is not known.
Children	Safety and efficacy in children have not been established.
Age Restrictions	FDA-approved for use in patients ages ≥18 years.

Adverse Drug Events

Kynamro[®] (mipomersen) safety data is based upon pooled results from four Phase III, randomized, double-blind, placebo-controlled trials (N=390, including 41 with homozygous familial hypercholesterolemia). Adverse reactions occurring in \geq 5% of patients receiving active treatment in clinical trials are summarized in Table 4.

Table 4. Adverse Events¹

Adverse Event	Kynamro [®] (mipomersen) 200 mg weekly, %, N=261	Placebo %, N=129
Gastrointestinal Disorders		
Nausea	14	8
General Disorders and Administration Site	e Conditions	
Chills	6	1
Edema, peripheral	5	2
Fatigue	15	8
Influenza-like illness	13	3
Injection site reactions	84	33
Pyrexia	8	3
Hepatobiliary disorders		
Hepatic steatosis	7	2
Investigations		
Alanine aminotransferase increased	10	1
Aspartate aminotransferase increased	6	2
Liver function test abnormal	5	1
Musculoskeletal Disorders		
Pain in extremity	7	3
Nervous System Disorder		
Headache	12	9
Vascular Disorders		
Hypertension	7	3

Page 4 of 11 Copyright 2013 • Review Completed on 05/20/2013

Contraindications/Precautions

Black Box Warning for Kynamro[®] (mipomersen)¹

WARNING

Kynamro[®] (mipomersen) can cause elevations in transaminases. Measure alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, and total bilirubin before initiating treatment and then ALT and AST regularly as recommended. During treatment, withhold the dose of mipomersen if the ALT or AST is ≥3 times the upper limit of normal (ULN). Discontinue mipomersen for clinically significant liver toxicity.

Mipomersen increases hepatic fat (hepatic steatosis) with or without concomitant increases in transaminases. Hepatic steatosis associated with mipomersen may be a risk factor for progressive liver disease, including steatohepatitis and cirrhosis.

Because of the risk of hepatotoxicity, mipomersen is available only through a restricted program called the Kynamro[®] REMS.

Kynamro[®] (mipomersen) is contraindicated in patients with a known hypersensitivity to any component of the product. The agent is also contraindicated in moderate to severe hepatic impairment (Child-Pugh B or C) or active liver disease, including unexplained persistent elevations of serum transaminases.¹

Due to the concerns of liver toxicity, a full liver panel should be obtained prior to initiating treatment. Causes of abnormal liver enzyme elevations should be identified and resolved before treatment, if possible. During the first year, liver tests should be conducted monthly and least every three months thereafter. If symptoms of liver toxicity are present, treatment should be discontinued immediately. In addition, caution should be exercised when using this agent with other medications known to cause hepatotoxicity or increases in hepatic fat and patients should not consume greater than one alcoholic drink per day.¹

Mipomersen has also been associated with injection site reactions (consisting of erythema, pain, pruritus and local swelling). Proper injection technique should be followed to minimize the risk of these events.¹ In addition, mipomersen has been associated with flu-like symptoms usually within two days of an injection.

Drug Interactions

No clinically relevant pharmacokinetic interactions were reported between mipomersen and warfarin, or between mipomersen and simvastatin or ezetimibe.¹

Dosage and Administration

Kynamro[®] (mipomersen) should be injected into the abdomen, thigh region or outer area of the upper arm avoiding areas affected by active skin disease, tattoos, scarring or injury (e.g., sunburn, inflammation).

Table 5. Dosing and Administration¹

Adult Dose	Pediatric Dose	Availability
Homozygous familial	Safety and	Injection:
hypercholesterolemia:	efficacy in children	200 mg/mL (in 1 mL vials or prefilled
Injection: initial, maximum and	have not been	syringes; packaged as single dose or
maintenance, 200 mg injected SC weekly	established.	a carton containing four doses)

Drug regimen abbreviations: SC=subcutaneously

Page 5 of 11 Copyright 2013 • Review Completed on 05/20/2013

Clinical Guidelines

Clinical Guideline	Recommendations
The Third Report of the	Low-density lipoprotein cholesterol (LDL-C) is identified as the primary
National Cholesterol	target of cholesterol-lowering therapy.
Education Program	Therapeutic lifestyle changes remain an essential modality in clinical
(NCEP):	management.
Expert Panel on	 In high-risk patients, the recommended LDL-C goal is <100 mg/dL;
Detection, Evaluation	however, when risk is very high, an LDL-C goal of <70 mg/dL is a
and Treatment of High	
Blood Cholesterol in	therapeutic option.
Adults (Adult	• When a high-risk patient has high triglycerides (TG) or low high-density
Treatment Panel III)	lipoprotein cholesterol (HDL-C), consideration can be given to
$(2001)^3$	combining a fibrate or nicotinic acid within an LDL-lowering drug.
(2001)	• For moderately high-risk patients, the recommended LDL-C goal is
Implications of Recent	<130 mg/dL, but an LDL-C goal <100 mg/dL is a therapeutic option.
Clinical Trials for the	When LDL-lowering drug therapy is employed in high-risk or
National Cholesterol	moderately high-risk persons, it is advised that intensity of therapy be
Education Program	sufficient to achieve at least a 30 to 40% reduction in LDL-C levels.
Adult Treatment Panel	• With lower-risk patients, the recommended LDL-C goal is <160 mg/dL.
III Guidelines (2004) ⁴	 Initial LDL-lowering treatment is typically with a moderate-dose statin
III Guideimes (2004)	but alternatives are a bile acid sequestrant or nicotinic acid.
	 If after six weeks the goal of therapy has not been achieved, LDL-
	lowering therapy can be intensified, either by increasing the dose of
	statin or by combining a statin with a bile acid sequestrant, nicotinic
	acid, or fibric acid derivative.
	• For patients with familial hypercholesterolemia, management with high-
	dose statins, nicotinic acid or LDL-apheresis should be considered to
	reduce coronary heart disease risk.
American Heart	For patients without atherosclerotic disease, including those with other
Association	risk factors, recommendations of the NCEP ATP III guidelines and their
(AHA)/American College	2004 update should still be considered current.
of Cardiology (ACC)	Therapeutic options to reduce non-high-density lipoprotein cholesterol
National Heart, Lung,	(HDL-C) include the following: more intense LDL-C lowering therapy, or
and Blood Institute	niacin (after LDL-C lowering therapy) or fibrate therapy (after LDL-C
(NHLBI):	lowering therapy).
AHA/ACC Guidelines	 If triglycerides are ≥500 mg/dL, therapeutic options to prevent
for Secondary	pancreatitis are fibrate or niacin before LDL-lowering therapy. Treat
Prevention for Patients	LDL-C to goal after triglyceride-lowering therapy.
With Coronary and	
Other Atherosclerotic	
Vascular Disease: 2006	
Update (2006) ⁵	
Institute for Clinical	• For monotherapy, statins are the drugs of choice for lowering LDL.
Systems Improvement	These agents should be initiated in patients with coronary heart disease
(ICSI): Healthcare	(CHD) or CHD equivalents.
Guideline:	 If a patient is intolerant to a statin, other statins should be tried or the
Lipid Management in	dose should be decreased before attempting alternate therapies.
Adults (2011) ⁶	 If patients are unable to take statins, then bile acid sequestrants, niacin,
	• In patients are unable to take statins, then ble acid sequestrants, macin, ezetimibe, fibric acids and niacin can be used.
	 Although combination therapy is not supported by outcome-based studies, some high risk patients will require it.
	studies, some high-risk patients will require it.

Page 6 of 11 Copyright 2013 • Review Completed on 05/20/2013

Clinical Guideline	Recommendations		
American Heart	• For children meeting criteria for lipid-lowering drug therapy, a statin is		
Association (AHA):	recommended as first-line treatment. The choice of statin is dependent		
Drug Therapy of High-	upon preference but should be initiated at the lowest dose once daily,		
Risk Lipid	usually at bedtime.		
Abnormalities in	For patients with high-risk lipid abnormalities, the presence of additional		
Children and	risk factors or high-risk conditions may reduce the recommended LDL		
Adolescents: a	level for initiation of drug therapy and the desired target LDL levels.		
Scientific Statement From the American	Therapy may also be considered for initiation in patients <10 years of		
Heart Association	age.		
(2007) ⁷	Additional research regarding drug therapy of high-risk lipid abaarmalities in abildrap is precided to surglusts the long term officery		
(2001)	abnormalities in children is needed to evaluate the long-term efficacy		
Fourth Joint Task Force	 and safety and impact on the atherosclerotic disease process. Total plasma cholesterol should be <5 mmol/L (<190 mg/dL), and LDL- 		
of the European Society	 Total plasma cholesterol should be <5 mmol/L (<190 mg/dL), and LDL- C should be <3 mmol/L (<115 mg/dL). 		
of Cardiology (ESC) and	 Statins are considered first-line drugs for lowering LDL-C. 		
Other Societies:	 Non-statin treatment 		
European Guidelines	 Non-statin treatment Selective cholesterol absorption inhibitors are not used as 		
on Cardiovascular	monotherapy to decrease LDL-C concentrations.		
Disease Prevention in	 Bile acid sequestrants also decrease total and LDL-C but 		
Clinical Practice	tend to increase triglyceride concentrations.		
(2012) ⁸	 Fibrates and niacin are used primarily for triglyceride 		
	lowering and increasing HDL-C, while fish oils (omega-3		
	fatty acids) in doses of 2 to 4 g/day are used for		
	triglyceride lowering.		
	Combination therapy may be used in patients needing additional		
	therapy to reach goals and the selection of appropriate drugs should		
	vary based upon lipid levels.		
	All patients with familial hypercholesterolemia must be recognized as		
	high-risk patients and be treated with lipid-lowering therapy.		
	 Rare patients with severe hypercholesterolemia, especially 		
	homozygous familial hypercholesterolemia, require specialist evaluation of the need for LDL apheresis.		
National Heart Lung and	Specific recommendations regarding the management of familial		
Blood Institute:	hypercholesterolemia include:		
Expert Panel on	Children with homozygous familial hypercholesterolemia and extremely		
Integrated Guidelines	elevated LDL-C levels (>500 mg/dL) have undergone effective LDL-C		
for Cardiovascular	lowering therapy with biweekly LDL apheresis under the care of lipid		
Health and Risk (2011) ⁹	specialists in academic medical centers.		
	• Statins have been shown to reduce LDL-C in children and adolescents		
	with marked LDL-C elevation or familial hypercholesterolemia.		
	Plant sterol esters and/or plant stanol esters up to 2 g/day as		
	replacement for usual fat sources can be used after two years of age in		
	children with familial hypercholesterolemia		
National Institute for	Healthcare professionals should consider prescribing a high-intensity		
Health and Clinical	statin to achieve a recommended reduction in LDL-C concentration of		
Excellence (NICE):	greater than 50% from baseline.		
Identification and	The dose of statin should be increased to the maximum licensed or televated dose to achieve a recommended reduction in LDL C		
Management of Familial	tolerated dose to achieve a recommended reduction in LDL-C		
Hypercholesterolemia	concentration of greater than 50% from baseline.		
(2008) ¹⁰	 Healthcare professionals should offer treatment with a statin with a low acquisition cost for adults with familial hypercholesterolemia in whom 		
(acquisition cost for adults with familial hypercholesterolemia in whom the diagnosis is made after the 60 years of age and who do not have		
	נווב טומטווטטוט וא ווומטב מונכו נווב טט אבמוט טו מעצ מווט אווט טט ווטנ וומעצ		

Page 7 of 11 Copyright 2013 • Review Completed on 05/20/2013

Clinical Guideline
Clinical Guideline National Lipid Association (NLA): Management of Familial Hypercholesterolemia in Adult Patients: Recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia (2011) ¹¹

Conclusions Kynamro[®] (mipomersen) is an oligonucleotide inhibitor of apolipoprotein B (ApoB)-100 synthesis that is approved as an adjunct to lipid-lowering medications and diet to reduce low density lipoprotein cholesterol

Page 8 of 11 Copyright 2013 • Review Completed on 05/20/2013

(LDL-C), ApoB, total cholesterol, and non-high density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia (HoFH).¹ Available treatment guidelines for this condition support the use of high-dose statins, LDL apheresis and other cholesterol lowering agents (e.g., ezetimibe), often as part of combination regimens to reach cholesterol goals.²⁻¹³

In clinical trials, mipomersen was evaluated as an adjunctive treatment and was associated with a significant decrease from baseline in LDL-C and other secondary measures of cholesterol.¹⁴ Mipomersen is associated with significant tolerability issues including liver toxicity and increased hepatic fat. Moreover, the effects of mipomersen on cardiovascular outcomes in patients with HoFH have not been established.¹

Page 9 of 11 Copyright 2013 • Review Completed on 05/20/2013

References

- 1. Kynamro[®] [package insert on the Internet]. Cambridge (MA): Genzyme Corporation; 2013 Jan [cited 2013 May 20]. Available from: http://www.kynamro.com/families.aspx.
- Rosenson RS, de Ferranti SD, Durrington P. Primary disorders of LDL-cholesterol metabolism. In: Basow DS (Ed). UpToDate [database on the internet]. Waltham (MA): UpToDate; 2013 [cited 2013 May 20]. Available from: http://www.utdol.com/utd/index.do.
- 3. Third report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Circulation. 2002 Dec 17;106(25):3143-421.
- 4. Grundy SM, Cleeman JI, Merz NB, Brewer B, Clark LT, Hunninghake DB, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. Circulation. 2004;110:227-39.
- Smith SC Jr, Allen J, Blair SN, Bonow RO, Brass LM, Fonarow GC, et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation. 2006 May 16;113(19):2363-72.
- Institute for Clinical Systems Improvement (ICSI). Healthcare guideline: lipid management in adults [guideline on the Internet]. 11th ed. Bloomington (MN): Institute for Clinical Systems Improvement; 2011 Oct [cited 2013 May 20]. Available from: http://www.icsi.org/guidelines_and_more/gl_os_prot/cardiovascular/lipid_management_3/lipid_manag ement in adults 4.html.
- McCrindle BW, Urbina EM, Dennison BA, Jacobson MS, Steinberger J, Rocchini AP, et al. Drug therapy of high-risk lipid abnormalities in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee, Council of Cardiovascular Disease in the Young, with the Council on Cardiovascular Nursing. Circulation. 2007 Apr 10;115(14):1948-67.
- Graham I, Atar D, Borch-Johnsen K, et al. European guidelines on cardiovascular disease prevention in clinical practice: Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur J Cardiovasc Prev Rehabil. 2007;14 Suppl 2:S1-113.
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011 Dec;128 Suppl 5:S213-56.
- Qureshi N, Humphries SE, Seed M, Rowlands P, Minhas R; NICE Guideline Development Group. Identification and management of familial hypercholesterolaemia: what does it mean to primary care? Br J Gen Pract. 2009 Oct;59(567):773-6.
- Ito MK, McGowan MP, Moriarty PM; National Lipid Association Expert Panel on Familial Hypercholesterolemia. Management of familial hypercholesterolemias in adult patients: recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011 Jun;5(3 Suppl):S38-45.
- 12. Kavey RE, Allada V, Daniels SR, Hayman LL, McCrindle BW, Newburger JW, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation. 2006 Dec 12;114(24):2710-38.
- Goldberg AC, Hopkins PN, Toth PP, Ballantyne CM, Rader DJ, Robinson JG, et al. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011 Jun;5(3 Suppl):S1-8. Epub 2011 Apr 12.
- 14. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with

Page 10 of 11 Copyright 2013 • Review Completed on 05/20/2013

homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010 Mar 20;375(9719):998-1006.

Page 11 of 11 Copyright 2013 • Review Completed on 05/20/2013

